This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | refsumcn.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| refsumcn.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| refsumcn.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| refsumcn.4 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| refsumcn.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | refsumcn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsumcn.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | refsumcn.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 3 | refsumcn.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | refsumcn.4 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | refsumcn.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 6 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 7 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 8 | 2 7 | eqtri | ⊢ 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 9 | 8 | oveq2i | ⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 10 | 5 9 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 11 | 6 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 14 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 15 | 2 14 | eqeltri | ⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ℝ ) ) |
| 17 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℝ ) | |
| 18 | 13 16 5 17 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℝ ) |
| 19 | 18 | frnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ran ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ⊆ ℝ ) |
| 20 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 21 | 20 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ℝ ⊆ ℂ ) |
| 22 | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) | |
| 23 | 12 19 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 24 | 10 23 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 25 | 6 3 4 24 | fsumcnf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 26 | 11 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 27 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ Fin ) |
| 28 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝜑 ) | |
| 29 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) | |
| 30 | 28 29 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ) |
| 31 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑥 ∈ 𝑋 ) | |
| 32 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) | |
| 33 | 32 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℝ ) |
| 34 | 18 33 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℝ ) |
| 35 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℝ → ( 𝑥 ∈ 𝑋 → 𝐵 ∈ ℝ ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 → 𝐵 ∈ ℝ ) ) |
| 37 | 30 31 36 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 38 | 27 37 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 39 | 38 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) ) |
| 40 | 1 39 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 41 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) | |
| 42 | 41 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝑋 Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) Fn 𝑋 ) |
| 43 | 40 42 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) Fn 𝑋 ) |
| 44 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 45 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 46 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) | |
| 47 | 44 45 46 | fvelrnbf | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) Fn 𝑋 → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) ) |
| 48 | 43 47 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) ) |
| 49 | 48 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) → ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) |
| 50 | 46 | nfrn | ⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 51 | 50 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 52 | 1 51 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 53 | nfcv | ⊢ Ⅎ 𝑥 ℝ | |
| 54 | 53 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ ℝ |
| 55 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 56 | 55 38 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ∧ Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) ) |
| 57 | 41 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 58 | 56 57 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 59 | 58 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 60 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) | |
| 61 | 59 60 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → Σ 𝑘 ∈ 𝐴 𝐵 = 𝑦 ) |
| 62 | 38 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 63 | 61 62 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ ℝ ) |
| 64 | 63 | 3adant1r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ ℝ ) |
| 65 | 64 | 3exp | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) → ( 𝑥 ∈ 𝑋 → ( ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ ℝ ) ) ) |
| 66 | 52 54 65 | rexlimd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ ℝ ) ) |
| 67 | 49 66 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 68 | 67 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) → 𝑦 ∈ ℝ ) ) |
| 69 | 68 | ssrdv | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ⊆ ℝ ) |
| 70 | 20 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 71 | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) | |
| 72 | 26 69 70 71 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 73 | 25 72 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 74 | 73 9 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |