This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sscmp.1 | ⊢ 𝑋 = ∪ 𝐾 | |
| Assertion | sscmp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) → 𝐽 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscmp.1 | ⊢ 𝑋 = ∪ 𝐾 | |
| 2 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) → 𝐽 ∈ Top ) |
| 4 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝐽 → 𝑥 ⊆ 𝐽 ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → 𝐾 ∈ Comp ) | |
| 6 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → 𝑥 ⊆ 𝐽 ) | |
| 7 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → 𝐽 ⊆ 𝐾 ) | |
| 8 | 6 7 | sstrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → 𝑥 ⊆ 𝐾 ) |
| 9 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 10 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → 𝑋 = ∪ 𝐽 ) |
| 12 | simprr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → ∪ 𝐽 = ∪ 𝑥 ) | |
| 13 | 11 12 | eqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → 𝑋 = ∪ 𝑥 ) |
| 14 | 1 | cmpcov | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝑥 ⊆ 𝐾 ∧ 𝑋 = ∪ 𝑥 ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) |
| 15 | 5 8 13 14 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) |
| 16 | 11 | eqeq1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → ( 𝑋 = ∪ 𝑦 ↔ ∪ 𝐽 = ∪ 𝑦 ) ) |
| 17 | 16 | rexbidv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → ( ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ 𝐽 = ∪ 𝑦 ) ) |
| 18 | 15 17 | mpbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ ( 𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ 𝐽 = ∪ 𝑦 ) |
| 19 | 18 | expr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ⊆ 𝐽 ) → ( ∪ 𝐽 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ 𝐽 = ∪ 𝑦 ) ) |
| 20 | 4 19 | sylan2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ 𝒫 𝐽 ) → ( ∪ 𝐽 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ 𝐽 = ∪ 𝑦 ) ) |
| 21 | 20 | ralrimiva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) → ∀ 𝑥 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ 𝐽 = ∪ 𝑦 ) ) |
| 22 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 23 | 22 | iscmp | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ 𝐽 = ∪ 𝑦 ) ) ) |
| 24 | 3 21 23 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾 ) → 𝐽 ∈ Comp ) |