This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology induced by the topology J on the empty set. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rest0 | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) = { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | restval | ⊢ ( ( 𝐽 ∈ Top ∧ ∅ ∈ V ) → ( 𝐽 ↾t ∅ ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ ∅ ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ ∅ ) ) ) |
| 4 | in0 | ⊢ ( 𝑥 ∩ ∅ ) = ∅ | |
| 5 | 1 | elsn2 | ⊢ ( ( 𝑥 ∩ ∅ ) ∈ { ∅ } ↔ ( 𝑥 ∩ ∅ ) = ∅ ) |
| 6 | 4 5 | mpbir | ⊢ ( 𝑥 ∩ ∅ ) ∈ { ∅ } |
| 7 | 6 | a1i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ ∅ ) ∈ { ∅ } ) |
| 8 | 7 | fmpttd | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ ∅ ) ) : 𝐽 ⟶ { ∅ } ) |
| 9 | 8 | frnd | ⊢ ( 𝐽 ∈ Top → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ ∅ ) ) ⊆ { ∅ } ) |
| 10 | 3 9 | eqsstrd | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) ⊆ { ∅ } ) |
| 11 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ ∅ ∈ V ) → ( 𝐽 ↾t ∅ ) ∈ Top ) | |
| 12 | 1 11 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) ∈ Top ) |
| 13 | 0opn | ⊢ ( ( 𝐽 ↾t ∅ ) ∈ Top → ∅ ∈ ( 𝐽 ↾t ∅ ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐽 ∈ Top → ∅ ∈ ( 𝐽 ↾t ∅ ) ) |
| 15 | 14 | snssd | ⊢ ( 𝐽 ∈ Top → { ∅ } ⊆ ( 𝐽 ↾t ∅ ) ) |
| 16 | 10 15 | eqssd | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) = { ∅ } ) |