This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a chain (with respect to inclusion) of functions is a function. Analogous to f1iun . (Contributed by AV, 6-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fiun.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| fiun.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | fiun | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiun.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 2 | fiun.2 | ⊢ 𝐵 ∈ V | |
| 3 | vex | ⊢ 𝑢 ∈ V | |
| 4 | eqeq1 | ⊢ ( 𝑧 = 𝑢 → ( 𝑧 = 𝐵 ↔ 𝑢 = 𝐵 ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑧 = 𝑢 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) ) |
| 6 | 3 5 | elab | ⊢ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) |
| 7 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) ) | |
| 8 | nfv | ⊢ Ⅎ 𝑥 Fun 𝑢 | |
| 9 | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 | |
| 10 | 9 | nfab | ⊢ Ⅎ 𝑥 { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
| 11 | nfv | ⊢ Ⅎ 𝑥 ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) | |
| 12 | 10 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) |
| 13 | 8 12 | nfan | ⊢ Ⅎ 𝑥 ( Fun 𝑢 ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 14 | ffun | ⊢ ( 𝐵 : 𝐷 ⟶ 𝑆 → Fun 𝐵 ) | |
| 15 | funeq | ⊢ ( 𝑢 = 𝐵 → ( Fun 𝑢 ↔ Fun 𝐵 ) ) | |
| 16 | bianir | ⊢ ( ( Fun 𝐵 ∧ ( Fun 𝑢 ↔ Fun 𝐵 ) ) → Fun 𝑢 ) | |
| 17 | 14 15 16 | syl2an | ⊢ ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ 𝑢 = 𝐵 ) → Fun 𝑢 ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → Fun 𝑢 ) |
| 19 | 1 | fiunlem | ⊢ ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 20 | 18 19 | jca | ⊢ ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 21 | 20 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) |
| 22 | 13 21 | rexlimi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 23 | 7 22 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 24 | 6 23 | sylan2b | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ( Fun 𝑢 ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 25 | 24 | ralrimiva | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∀ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( Fun 𝑢 ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 26 | fununi | ⊢ ( ∀ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( Fun 𝑢 ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) → Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) | |
| 27 | 25 26 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 28 | 2 | dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
| 29 | 28 | funeqi | ⊢ ( Fun ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 30 | 27 29 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 31 | 3 | eldm2 | ⊢ ( 𝑢 ∈ dom 𝐵 ↔ ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
| 32 | fdm | ⊢ ( 𝐵 : 𝐷 ⟶ 𝑆 → dom 𝐵 = 𝐷 ) | |
| 33 | 32 | eleq2d | ⊢ ( 𝐵 : 𝐷 ⟶ 𝑆 → ( 𝑢 ∈ dom 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
| 34 | 31 33 | bitr3id | ⊢ ( 𝐵 : 𝐷 ⟶ 𝑆 → ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
| 36 | 35 | ralrexbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 ∈ 𝐷 ) ) |
| 37 | eliun | ⊢ ( 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) | |
| 38 | 37 | exbii | ⊢ ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑣 ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
| 39 | 3 | eldm2 | ⊢ ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 40 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ ∃ 𝑣 ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) | |
| 41 | 38 39 40 | 3bitr4i | ⊢ ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
| 42 | eliun | ⊢ ( 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐷 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 ∈ 𝐷 ) | |
| 43 | 36 41 42 | 3bitr4g | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐷 ) ) |
| 44 | 43 | eqrdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷 ) |
| 45 | df-fn | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ↔ ( Fun ∪ 𝑥 ∈ 𝐴 𝐵 ∧ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷 ) ) | |
| 46 | 30 44 45 | sylanbrc | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ) |
| 47 | rniun | ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 | |
| 48 | frn | ⊢ ( 𝐵 : 𝐷 ⟶ 𝑆 → ran 𝐵 ⊆ 𝑆 ) | |
| 49 | 48 | adantr | ⊢ ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ran 𝐵 ⊆ 𝑆 ) |
| 50 | 49 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) |
| 51 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ↔ ∀ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) | |
| 52 | 50 51 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) |
| 53 | 47 52 | eqsstrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆 ) |
| 54 | df-f | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ∧ ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆 ) ) | |
| 55 | 46 53 54 | sylanbrc | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ) |