This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023) Reduce axiom usage. (Revised by SN, 13-Nov-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralrexbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) | |
| Assertion | ralrexbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrexbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜃 ) ) |
| 3 | rexbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜃 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜃 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜃 ) ) |