This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fiun and f1iun . Formerly part of f1iun . (Contributed by AV, 6-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fiun.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| Assertion | fiunlem | ⊢ ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiun.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 2 | vex | ⊢ 𝑣 ∈ V | |
| 3 | eqeq1 | ⊢ ( 𝑧 = 𝑣 → ( 𝑧 = 𝐵 ↔ 𝑣 = 𝐵 ) ) | |
| 4 | 3 | rexbidv | ⊢ ( 𝑧 = 𝑣 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑣 = 𝐵 ) ) |
| 5 | 2 4 | elab | ⊢ ( 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑣 = 𝐵 ) |
| 6 | 1 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑣 = 𝐵 ↔ 𝑣 = 𝐶 ) ) |
| 7 | 6 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑣 = 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑣 = 𝐶 ) |
| 8 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑣 = 𝐶 ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) | |
| 9 | sseq12 | ⊢ ( ( 𝑢 = 𝐵 ∧ 𝑣 = 𝐶 ) → ( 𝑢 ⊆ 𝑣 ↔ 𝐵 ⊆ 𝐶 ) ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝑣 = 𝐶 ∧ 𝑢 = 𝐵 ) → ( 𝑢 ⊆ 𝑣 ↔ 𝐵 ⊆ 𝐶 ) ) |
| 11 | sseq12 | ⊢ ( ( 𝑣 = 𝐶 ∧ 𝑢 = 𝐵 ) → ( 𝑣 ⊆ 𝑢 ↔ 𝐶 ⊆ 𝐵 ) ) | |
| 12 | 10 11 | orbi12d | ⊢ ( ( 𝑣 = 𝐶 ∧ 𝑢 = 𝐵 ) → ( ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ↔ ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ) |
| 13 | 12 | biimprcd | ⊢ ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) → ( ( 𝑣 = 𝐶 ∧ 𝑢 = 𝐵 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 14 | 13 | expdimp | ⊢ ( ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ∧ 𝑣 = 𝐶 ) → ( 𝑢 = 𝐵 → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 15 | 14 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ∧ 𝑣 = 𝐶 ) → ( 𝑢 = 𝐵 → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ∧ 𝑣 = 𝐶 ) ∧ 𝑢 = 𝐵 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 17 | 8 16 | sylan | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑣 = 𝐶 ) ∧ 𝑢 = 𝐵 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 18 | 17 | an32s | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ∧ 𝑢 = 𝐵 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑣 = 𝐶 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 19 | 18 | adantlll | ⊢ ( ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑣 = 𝐶 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 20 | 7 19 | sylan2b | ⊢ ( ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) ∧ ∃ 𝑥 ∈ 𝐴 𝑣 = 𝐵 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 21 | 5 20 | sylan2b | ⊢ ( ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 22 | 21 | ralrimiva | ⊢ ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |