This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of TakeutiZaring p. 90 and its converse. (Contributed by NM, 26-Jul-2004) Avoid ax-pow . (Revised by BTernaryTau, 2-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onomeneq | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 2 | nnfi | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ Fin ) | |
| 3 | domfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ∈ Fin ) | |
| 4 | simpr | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
| 5 | 3 4 | jca | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) ) |
| 6 | domnsymfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) | |
| 7 | 6 | ex | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
| 8 | php3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 9 | 8 | ex | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
| 10 | 7 9 | nsyld | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 12 | 11 | expimpd | ⊢ ( 𝐵 ∈ ω → ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 13 | 5 12 | syl5 | ⊢ ( 𝐵 ∈ ω → ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 14 | 2 13 | mpand | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 16 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 17 | nnord | ⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) | |
| 18 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 19 | ordelpss | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) | |
| 20 | 19 | ancoms | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
| 21 | 20 | notbid | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
| 22 | 18 21 | bitrd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
| 23 | 16 17 22 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
| 24 | 15 23 | sylibrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 25 | 1 24 | syl5 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 26 | 25 | 3impia | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| 27 | ensymfib | ⊢ ( 𝐵 ∈ Fin → ( 𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵 ) ) | |
| 28 | 2 27 | syl | ⊢ ( 𝐵 ∈ ω → ( 𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵 ) ) |
| 29 | endom | ⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 30 | 28 29 | biimtrrdi | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| 31 | 30 | imp | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
| 32 | 31 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
| 33 | nndomog | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ On ) → ( 𝐵 ≼ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 34 | 33 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐵 ≼ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 35 | 34 | biimp3a | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 36 | 32 35 | syld3an3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
| 37 | 26 36 | eqssd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐴 = 𝐵 ) |
| 38 | 37 | 3expia | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) |
| 39 | enrefnn | ⊢ ( 𝐵 ∈ ω → 𝐵 ≈ 𝐵 ) | |
| 40 | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐵 ) ) | |
| 41 | 39 40 | syl5ibrcom | ⊢ ( 𝐵 ∈ ω → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 43 | 38 42 | impbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |