This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wemoiso2 | ⊢ ( 𝑆 We 𝐵 → ∃* 𝑓 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑆 We 𝐵 ) | |
| 2 | isof1o | ⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) | |
| 4 | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ran 𝑓 = 𝐵 ) |
| 6 | vex | ⊢ 𝑓 ∈ V | |
| 7 | 6 | rnex | ⊢ ran 𝑓 ∈ V |
| 8 | 5 7 | eqeltrrdi | ⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐵 ∈ V ) |
| 9 | 8 | ad2antrl | ⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐵 ∈ V ) |
| 10 | exse | ⊢ ( 𝐵 ∈ V → 𝑆 Se 𝐵 ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑆 Se 𝐵 ) |
| 12 | 1 11 | jca | ⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ) |
| 13 | weisoeq2 | ⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑓 = 𝑔 ) | |
| 14 | 12 13 | sylancom | ⊢ ( ( 𝑆 We 𝐵 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑓 = 𝑔 ) |
| 15 | 14 | ex | ⊢ ( 𝑆 We 𝐵 → ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
| 16 | 15 | alrimivv | ⊢ ( 𝑆 We 𝐵 → ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
| 17 | isoeq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) | |
| 18 | 17 | mo4 | ⊢ ( ∃* 𝑓 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
| 19 | 16 18 | sylibr | ⊢ ( 𝑆 We 𝐵 → ∃* 𝑓 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |