This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | finnisoeu | |- ( ( R Or A /\ A e. Fin ) -> E! f f Isom _E , R ( ( card ` A ) , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- OrdIso ( R , A ) = OrdIso ( R , A ) |
|
| 2 | 1 | oiexg | |- ( A e. Fin -> OrdIso ( R , A ) e. _V ) |
| 3 | 2 | adantl | |- ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) e. _V ) |
| 4 | simpr | |- ( ( R Or A /\ A e. Fin ) -> A e. Fin ) |
|
| 5 | wofi | |- ( ( R Or A /\ A e. Fin ) -> R We A ) |
|
| 6 | 1 | oiiso | |- ( ( A e. Fin /\ R We A ) -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) |
| 7 | 4 5 6 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) |
| 8 | 1 | oien | |- ( ( A e. Fin /\ R We A ) -> dom OrdIso ( R , A ) ~~ A ) |
| 9 | 4 5 8 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) ~~ A ) |
| 10 | ficardid | |- ( A e. Fin -> ( card ` A ) ~~ A ) |
|
| 11 | 10 | adantl | |- ( ( R Or A /\ A e. Fin ) -> ( card ` A ) ~~ A ) |
| 12 | 11 | ensymd | |- ( ( R Or A /\ A e. Fin ) -> A ~~ ( card ` A ) ) |
| 13 | entr | |- ( ( dom OrdIso ( R , A ) ~~ A /\ A ~~ ( card ` A ) ) -> dom OrdIso ( R , A ) ~~ ( card ` A ) ) |
|
| 14 | 9 12 13 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) ~~ ( card ` A ) ) |
| 15 | 1 | oion | |- ( A e. Fin -> dom OrdIso ( R , A ) e. On ) |
| 16 | 15 | adantl | |- ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) e. On ) |
| 17 | ficardom | |- ( A e. Fin -> ( card ` A ) e. _om ) |
|
| 18 | 17 | adantl | |- ( ( R Or A /\ A e. Fin ) -> ( card ` A ) e. _om ) |
| 19 | onomeneq | |- ( ( dom OrdIso ( R , A ) e. On /\ ( card ` A ) e. _om ) -> ( dom OrdIso ( R , A ) ~~ ( card ` A ) <-> dom OrdIso ( R , A ) = ( card ` A ) ) ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> ( dom OrdIso ( R , A ) ~~ ( card ` A ) <-> dom OrdIso ( R , A ) = ( card ` A ) ) ) |
| 21 | 14 20 | mpbid | |- ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) = ( card ` A ) ) |
| 22 | isoeq4 | |- ( dom OrdIso ( R , A ) = ( card ` A ) -> ( OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) |
|
| 23 | 21 22 | syl | |- ( ( R Or A /\ A e. Fin ) -> ( OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) |
| 24 | 7 23 | mpbid | |- ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) |
| 25 | isoeq1 | |- ( f = OrdIso ( R , A ) -> ( f Isom _E , R ( ( card ` A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) |
|
| 26 | 3 24 25 | spcedv | |- ( ( R Or A /\ A e. Fin ) -> E. f f Isom _E , R ( ( card ` A ) , A ) ) |
| 27 | wemoiso2 | |- ( R We A -> E* f f Isom _E , R ( ( card ` A ) , A ) ) |
|
| 28 | 5 27 | syl | |- ( ( R Or A /\ A e. Fin ) -> E* f f Isom _E , R ( ( card ` A ) , A ) ) |
| 29 | df-eu | |- ( E! f f Isom _E , R ( ( card ` A ) , A ) <-> ( E. f f Isom _E , R ( ( card ` A ) , A ) /\ E* f f Isom _E , R ( ( card ` A ) , A ) ) ) |
|
| 30 | 26 28 29 | sylanbrc | |- ( ( R Or A /\ A e. Fin ) -> E! f f Isom _E , R ( ( card ` A ) , A ) ) |