This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin67 | ⊢ ( 𝐴 ∈ FinVI → 𝐴 ∈ FinVII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin6 | ⊢ ( 𝐴 ∈ FinVI ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) | |
| 2 | 2onn | ⊢ 2o ∈ ω | |
| 3 | ssid | ⊢ 2o ⊆ 2o | |
| 4 | ssnnfi | ⊢ ( ( 2o ∈ ω ∧ 2o ⊆ 2o ) → 2o ∈ Fin ) | |
| 5 | 2 3 4 | mp2an | ⊢ 2o ∈ Fin |
| 6 | sdomdom | ⊢ ( 𝐴 ≺ 2o → 𝐴 ≼ 2o ) | |
| 7 | domfi | ⊢ ( ( 2o ∈ Fin ∧ 𝐴 ≼ 2o ) → 𝐴 ∈ Fin ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐴 ≺ 2o → 𝐴 ∈ Fin ) |
| 9 | fin17 | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ FinVII ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ≺ 2o → 𝐴 ∈ FinVII ) |
| 11 | sdomnen | ⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ¬ 𝐴 ≈ ( 𝐴 × 𝐴 ) ) | |
| 12 | eldifi | ⊢ ( 𝑏 ∈ ( On ∖ ω ) → 𝑏 ∈ On ) | |
| 13 | ensym | ⊢ ( 𝐴 ≈ 𝑏 → 𝑏 ≈ 𝐴 ) | |
| 14 | isnumi | ⊢ ( ( 𝑏 ∈ On ∧ 𝑏 ≈ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑏 ) → 𝐴 ∈ dom card ) |
| 16 | vex | ⊢ 𝑏 ∈ V | |
| 17 | eldif | ⊢ ( 𝑏 ∈ ( On ∖ ω ) ↔ ( 𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω ) ) | |
| 18 | ordom | ⊢ Ord ω | |
| 19 | eloni | ⊢ ( 𝑏 ∈ On → Ord 𝑏 ) | |
| 20 | ordtri1 | ⊢ ( ( Ord ω ∧ Ord 𝑏 ) → ( ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω ) ) | |
| 21 | 18 19 20 | sylancr | ⊢ ( 𝑏 ∈ On → ( ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω ) ) |
| 22 | 21 | biimpar | ⊢ ( ( 𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω ) → ω ⊆ 𝑏 ) |
| 23 | 17 22 | sylbi | ⊢ ( 𝑏 ∈ ( On ∖ ω ) → ω ⊆ 𝑏 ) |
| 24 | ssdomg | ⊢ ( 𝑏 ∈ V → ( ω ⊆ 𝑏 → ω ≼ 𝑏 ) ) | |
| 25 | 16 23 24 | mpsyl | ⊢ ( 𝑏 ∈ ( On ∖ ω ) → ω ≼ 𝑏 ) |
| 26 | domen2 | ⊢ ( 𝐴 ≈ 𝑏 → ( ω ≼ 𝐴 ↔ ω ≼ 𝑏 ) ) | |
| 27 | 25 26 | imbitrrid | ⊢ ( 𝐴 ≈ 𝑏 → ( 𝑏 ∈ ( On ∖ ω ) → ω ≼ 𝐴 ) ) |
| 28 | 27 | impcom | ⊢ ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑏 ) → ω ≼ 𝐴 ) |
| 29 | infxpidm2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) | |
| 30 | 15 28 29 | syl2anc | ⊢ ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑏 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 31 | ensym | ⊢ ( ( 𝐴 × 𝐴 ) ≈ 𝐴 → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑏 ) → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 33 | 32 | rexlimiva | ⊢ ( ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 34 | 11 33 | nsyl | ⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 ) |
| 35 | relsdom | ⊢ Rel ≺ | |
| 36 | 35 | brrelex1i | ⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → 𝐴 ∈ V ) |
| 37 | isfin7 | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 ) ) |
| 39 | 34 38 | mpbird | ⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → 𝐴 ∈ FinVII ) |
| 40 | 10 39 | jaoi | ⊢ ( ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) → 𝐴 ∈ FinVII ) |
| 41 | 1 40 | sylbi | ⊢ ( 𝐴 ∈ FinVI → 𝐴 ∈ FinVII ) |