This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin67 | |- ( A e. Fin6 -> A e. Fin7 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin6 | |- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
|
| 2 | 2onn | |- 2o e. _om |
|
| 3 | ssid | |- 2o C_ 2o |
|
| 4 | ssnnfi | |- ( ( 2o e. _om /\ 2o C_ 2o ) -> 2o e. Fin ) |
|
| 5 | 2 3 4 | mp2an | |- 2o e. Fin |
| 6 | sdomdom | |- ( A ~< 2o -> A ~<_ 2o ) |
|
| 7 | domfi | |- ( ( 2o e. Fin /\ A ~<_ 2o ) -> A e. Fin ) |
|
| 8 | 5 6 7 | sylancr | |- ( A ~< 2o -> A e. Fin ) |
| 9 | fin17 | |- ( A e. Fin -> A e. Fin7 ) |
|
| 10 | 8 9 | syl | |- ( A ~< 2o -> A e. Fin7 ) |
| 11 | sdomnen | |- ( A ~< ( A X. A ) -> -. A ~~ ( A X. A ) ) |
|
| 12 | eldifi | |- ( b e. ( On \ _om ) -> b e. On ) |
|
| 13 | ensym | |- ( A ~~ b -> b ~~ A ) |
|
| 14 | isnumi | |- ( ( b e. On /\ b ~~ A ) -> A e. dom card ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> A e. dom card ) |
| 16 | vex | |- b e. _V |
|
| 17 | eldif | |- ( b e. ( On \ _om ) <-> ( b e. On /\ -. b e. _om ) ) |
|
| 18 | ordom | |- Ord _om |
|
| 19 | eloni | |- ( b e. On -> Ord b ) |
|
| 20 | ordtri1 | |- ( ( Ord _om /\ Ord b ) -> ( _om C_ b <-> -. b e. _om ) ) |
|
| 21 | 18 19 20 | sylancr | |- ( b e. On -> ( _om C_ b <-> -. b e. _om ) ) |
| 22 | 21 | biimpar | |- ( ( b e. On /\ -. b e. _om ) -> _om C_ b ) |
| 23 | 17 22 | sylbi | |- ( b e. ( On \ _om ) -> _om C_ b ) |
| 24 | ssdomg | |- ( b e. _V -> ( _om C_ b -> _om ~<_ b ) ) |
|
| 25 | 16 23 24 | mpsyl | |- ( b e. ( On \ _om ) -> _om ~<_ b ) |
| 26 | domen2 | |- ( A ~~ b -> ( _om ~<_ A <-> _om ~<_ b ) ) |
|
| 27 | 25 26 | imbitrrid | |- ( A ~~ b -> ( b e. ( On \ _om ) -> _om ~<_ A ) ) |
| 28 | 27 | impcom | |- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> _om ~<_ A ) |
| 29 | infxpidm2 | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A ) |
|
| 30 | 15 28 29 | syl2anc | |- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> ( A X. A ) ~~ A ) |
| 31 | ensym | |- ( ( A X. A ) ~~ A -> A ~~ ( A X. A ) ) |
|
| 32 | 30 31 | syl | |- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> A ~~ ( A X. A ) ) |
| 33 | 32 | rexlimiva | |- ( E. b e. ( On \ _om ) A ~~ b -> A ~~ ( A X. A ) ) |
| 34 | 11 33 | nsyl | |- ( A ~< ( A X. A ) -> -. E. b e. ( On \ _om ) A ~~ b ) |
| 35 | relsdom | |- Rel ~< |
|
| 36 | 35 | brrelex1i | |- ( A ~< ( A X. A ) -> A e. _V ) |
| 37 | isfin7 | |- ( A e. _V -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) ) |
|
| 38 | 36 37 | syl | |- ( A ~< ( A X. A ) -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) ) |
| 39 | 34 38 | mpbird | |- ( A ~< ( A X. A ) -> A e. Fin7 ) |
| 40 | 10 39 | jaoi | |- ( ( A ~< 2o \/ A ~< ( A X. A ) ) -> A e. Fin7 ) |
| 41 | 1 40 | sylbi | |- ( A e. Fin6 -> A e. Fin7 ) |