This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin6 | ⊢ ( 𝐴 ∈ FinVI ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin6 | ⊢ FinVI = { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ FinVI ↔ 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } ) |
| 3 | relsdom | ⊢ Rel ≺ | |
| 4 | 3 | brrelex1i | ⊢ ( 𝐴 ≺ 2o → 𝐴 ∈ V ) |
| 5 | 3 | brrelex1i | ⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → 𝐴 ∈ V ) |
| 6 | 4 5 | jaoi | ⊢ ( ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) → 𝐴 ∈ V ) |
| 7 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ 2o ↔ 𝐴 ≺ 2o ) ) | |
| 8 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 9 | 8 | sqxpeqd | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 × 𝑥 ) = ( 𝐴 × 𝐴 ) ) |
| 10 | 8 9 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ ( 𝑥 × 𝑥 ) ↔ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| 11 | 7 10 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) ) |
| 12 | 6 11 | elab3 | ⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| 13 | 2 12 | bitri | ⊢ ( 𝐴 ∈ FinVI ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |