This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin17 | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ FinVII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝑏 ∈ ( On ∖ ω ) ↔ ( 𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω ) ) | |
| 2 | enfi | ⊢ ( 𝐴 ≈ 𝑏 → ( 𝐴 ∈ Fin ↔ 𝑏 ∈ Fin ) ) | |
| 3 | onfin | ⊢ ( 𝑏 ∈ On → ( 𝑏 ∈ Fin ↔ 𝑏 ∈ ω ) ) | |
| 4 | 2 3 | sylan9bbr | ⊢ ( ( 𝑏 ∈ On ∧ 𝐴 ≈ 𝑏 ) → ( 𝐴 ∈ Fin ↔ 𝑏 ∈ ω ) ) |
| 5 | 4 | biimpd | ⊢ ( ( 𝑏 ∈ On ∧ 𝐴 ≈ 𝑏 ) → ( 𝐴 ∈ Fin → 𝑏 ∈ ω ) ) |
| 6 | 5 | con3d | ⊢ ( ( 𝑏 ∈ On ∧ 𝐴 ≈ 𝑏 ) → ( ¬ 𝑏 ∈ ω → ¬ 𝐴 ∈ Fin ) ) |
| 7 | 6 | impancom | ⊢ ( ( 𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω ) → ( 𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin ) ) |
| 8 | 1 7 | sylbi | ⊢ ( 𝑏 ∈ ( On ∖ ω ) → ( 𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin ) ) |
| 9 | 8 | rexlimiv | ⊢ ( ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 → ¬ 𝐴 ∈ Fin ) |
| 10 | 9 | con2i | ⊢ ( 𝐴 ∈ Fin → ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 ) |
| 11 | isfin7 | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 ) ) | |
| 12 | 10 11 | mpbird | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ FinVII ) |