This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin7-2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinVII ↔ ( 𝐴 ∈ dom card → 𝐴 ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin7 | ⊢ ( 𝐴 ∈ FinVII → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐴 ∈ FinVII → ¬ ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 ) |
| 3 | isnum2 | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) | |
| 4 | ensym | ⊢ ( 𝑥 ≈ 𝐴 → 𝐴 ≈ 𝑥 ) | |
| 5 | simprl | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) → 𝑥 ∈ On ) | |
| 6 | enfi | ⊢ ( 𝐴 ≈ 𝑥 → ( 𝐴 ∈ Fin ↔ 𝑥 ∈ Fin ) ) | |
| 7 | onfin | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ Fin ↔ 𝑥 ∈ ω ) ) | |
| 8 | 6 7 | sylan9bbr | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) → ( 𝐴 ∈ Fin ↔ 𝑥 ∈ ω ) ) |
| 9 | 8 | biimprd | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) → ( 𝑥 ∈ ω → 𝐴 ∈ Fin ) ) |
| 10 | 9 | con3d | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) → ( ¬ 𝐴 ∈ Fin → ¬ 𝑥 ∈ ω ) ) |
| 11 | 10 | impcom | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) → ¬ 𝑥 ∈ ω ) |
| 12 | 5 11 | eldifd | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) → 𝑥 ∈ ( On ∖ ω ) ) |
| 13 | simprr | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) → 𝐴 ≈ 𝑥 ) | |
| 14 | 12 13 | jca | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) → ( 𝑥 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑥 ) ) |
| 15 | 4 14 | sylanr2 | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 ∈ On ∧ 𝑥 ≈ 𝐴 ) ) → ( 𝑥 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑥 ) ) |
| 16 | 15 | ex | ⊢ ( ¬ 𝐴 ∈ Fin → ( ( 𝑥 ∈ On ∧ 𝑥 ≈ 𝐴 ) → ( 𝑥 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑥 ) ) ) |
| 17 | 16 | reximdv2 | ⊢ ( ¬ 𝐴 ∈ Fin → ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 → ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 ) ) |
| 18 | 17 | com12 | ⊢ ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 ) ) |
| 19 | 3 18 | sylbi | ⊢ ( 𝐴 ∈ dom card → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 ) ) |
| 20 | 19 | con1d | ⊢ ( 𝐴 ∈ dom card → ( ¬ ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 → 𝐴 ∈ Fin ) ) |
| 21 | 2 20 | syl5com | ⊢ ( 𝐴 ∈ FinVII → ( 𝐴 ∈ dom card → 𝐴 ∈ Fin ) ) |
| 22 | eldifi | ⊢ ( 𝑥 ∈ ( On ∖ ω ) → 𝑥 ∈ On ) | |
| 23 | ensym | ⊢ ( 𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴 ) | |
| 24 | isnumi | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ≈ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 25 | 22 23 24 | syl2an | ⊢ ( ( 𝑥 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑥 ) → 𝐴 ∈ dom card ) |
| 26 | 25 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card ) |
| 27 | 26 | con3i | ⊢ ( ¬ 𝐴 ∈ dom card → ¬ ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 ) |
| 28 | isfin7 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑥 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑥 ) ) | |
| 29 | 27 28 | imbitrrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ dom card → 𝐴 ∈ FinVII ) ) |
| 30 | fin17 | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ FinVII ) | |
| 31 | 30 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Fin → 𝐴 ∈ FinVII ) ) |
| 32 | 29 31 | jad | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∈ dom card → 𝐴 ∈ Fin ) → 𝐴 ∈ FinVII ) ) |
| 33 | 21 32 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinVII ↔ ( 𝐴 ∈ dom card → 𝐴 ∈ Fin ) ) ) |