This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . Fin2 sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem40.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| Assertion | fin23lem40 | ⊢ ( 𝐴 ∈ FinII → 𝐴 ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem40.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 2 | elmapi | ⊢ ( 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝑓 : ω ⟶ 𝒫 𝐴 ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → 𝐴 ∈ FinII ) | |
| 4 | frn | ⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → ran 𝑓 ⊆ 𝒫 𝐴 ) | |
| 5 | 4 | ad2antrl | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ran 𝑓 ⊆ 𝒫 𝐴 ) |
| 6 | fdm | ⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → dom 𝑓 = ω ) | |
| 7 | peano1 | ⊢ ∅ ∈ ω | |
| 8 | ne0i | ⊢ ( ∅ ∈ ω → ω ≠ ∅ ) | |
| 9 | 7 8 | mp1i | ⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → ω ≠ ∅ ) |
| 10 | 6 9 | eqnetrd | ⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → dom 𝑓 ≠ ∅ ) |
| 11 | dm0rn0 | ⊢ ( dom 𝑓 = ∅ ↔ ran 𝑓 = ∅ ) | |
| 12 | 11 | necon3bii | ⊢ ( dom 𝑓 ≠ ∅ ↔ ran 𝑓 ≠ ∅ ) |
| 13 | 10 12 | sylib | ⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → ran 𝑓 ≠ ∅ ) |
| 14 | 13 | ad2antrl | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ran 𝑓 ≠ ∅ ) |
| 15 | ffn | ⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → 𝑓 Fn ω ) | |
| 16 | 15 | ad2antrl | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → 𝑓 Fn ω ) |
| 17 | sspss | ⊢ ( ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ↔ ( ( 𝑓 ‘ suc 𝑏 ) ⊊ ( 𝑓 ‘ 𝑏 ) ∨ ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ 𝑏 ) ) ) | |
| 18 | fvex | ⊢ ( 𝑓 ‘ 𝑏 ) ∈ V | |
| 19 | fvex | ⊢ ( 𝑓 ‘ suc 𝑏 ) ∈ V | |
| 20 | 18 19 | brcnv | ⊢ ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ↔ ( 𝑓 ‘ suc 𝑏 ) [⊊] ( 𝑓 ‘ 𝑏 ) ) |
| 21 | 18 | brrpss | ⊢ ( ( 𝑓 ‘ suc 𝑏 ) [⊊] ( 𝑓 ‘ 𝑏 ) ↔ ( 𝑓 ‘ suc 𝑏 ) ⊊ ( 𝑓 ‘ 𝑏 ) ) |
| 22 | 20 21 | bitri | ⊢ ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ↔ ( 𝑓 ‘ suc 𝑏 ) ⊊ ( 𝑓 ‘ 𝑏 ) ) |
| 23 | eqcom | ⊢ ( ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ↔ ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ 𝑏 ) ) | |
| 24 | 22 23 | orbi12i | ⊢ ( ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ↔ ( ( 𝑓 ‘ suc 𝑏 ) ⊊ ( 𝑓 ‘ 𝑏 ) ∨ ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ 𝑏 ) ) ) |
| 25 | 17 24 | sylbb2 | ⊢ ( ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ) |
| 26 | 25 | ralimi | ⊢ ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∀ 𝑏 ∈ ω ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ) |
| 27 | 26 | ad2antll | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ∀ 𝑏 ∈ ω ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ) |
| 28 | porpss | ⊢ [⊊] Po ran 𝑓 | |
| 29 | cnvpo | ⊢ ( [⊊] Po ran 𝑓 ↔ ◡ [⊊] Po ran 𝑓 ) | |
| 30 | 28 29 | mpbi | ⊢ ◡ [⊊] Po ran 𝑓 |
| 31 | 30 | a1i | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ◡ [⊊] Po ran 𝑓 ) |
| 32 | sornom | ⊢ ( ( 𝑓 Fn ω ∧ ∀ 𝑏 ∈ ω ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ∧ ◡ [⊊] Po ran 𝑓 ) → ◡ [⊊] Or ran 𝑓 ) | |
| 33 | 16 27 31 32 | syl3anc | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ◡ [⊊] Or ran 𝑓 ) |
| 34 | cnvso | ⊢ ( [⊊] Or ran 𝑓 ↔ ◡ [⊊] Or ran 𝑓 ) | |
| 35 | 33 34 | sylibr | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → [⊊] Or ran 𝑓 ) |
| 36 | fin2i2 | ⊢ ( ( ( 𝐴 ∈ FinII ∧ ran 𝑓 ⊆ 𝒫 𝐴 ) ∧ ( ran 𝑓 ≠ ∅ ∧ [⊊] Or ran 𝑓 ) ) → ∩ ran 𝑓 ∈ ran 𝑓 ) | |
| 37 | 3 5 14 35 36 | syl22anc | ⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ∩ ran 𝑓 ∈ ran 𝑓 ) |
| 38 | 37 | expr | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝑓 : ω ⟶ 𝒫 𝐴 ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 39 | 2 38 | sylan2 | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 40 | 39 | ralrimiva | ⊢ ( 𝐴 ∈ FinII → ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 41 | 1 | isfin3ds | ⊢ ( 𝐴 ∈ FinII → ( 𝐴 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 42 | 40 41 | mpbird | ⊢ ( 𝐴 ∈ FinII → 𝐴 ∈ 𝐹 ) |