This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isfin3ds.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| Assertion | isfin3ds | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3ds.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 2 | suceq | ⊢ ( 𝑏 = 𝑥 → suc 𝑏 = suc 𝑥 ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑏 = 𝑥 → ( 𝑎 ‘ suc 𝑏 ) = ( 𝑎 ‘ suc 𝑥 ) ) |
| 4 | fveq2 | ⊢ ( 𝑏 = 𝑥 → ( 𝑎 ‘ 𝑏 ) = ( 𝑎 ‘ 𝑥 ) ) | |
| 5 | 3 4 | sseq12d | ⊢ ( 𝑏 = 𝑥 → ( ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) ↔ ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ) ) |
| 6 | 5 | cbvralvw | ⊢ ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) ↔ ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ) |
| 7 | fveq1 | ⊢ ( 𝑎 = 𝑓 → ( 𝑎 ‘ suc 𝑥 ) = ( 𝑓 ‘ suc 𝑥 ) ) | |
| 8 | fveq1 | ⊢ ( 𝑎 = 𝑓 → ( 𝑎 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 9 | 7 8 | sseq12d | ⊢ ( 𝑎 = 𝑓 → ( ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ↔ ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑎 = 𝑓 → ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ) ) |
| 11 | 6 10 | bitrid | ⊢ ( 𝑎 = 𝑓 → ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) ↔ ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ) ) |
| 12 | rneq | ⊢ ( 𝑎 = 𝑓 → ran 𝑎 = ran 𝑓 ) | |
| 13 | 12 | inteqd | ⊢ ( 𝑎 = 𝑓 → ∩ ran 𝑎 = ∩ ran 𝑓 ) |
| 14 | 13 12 | eleq12d | ⊢ ( 𝑎 = 𝑓 → ( ∩ ran 𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 15 | 11 14 | imbi12d | ⊢ ( 𝑎 = 𝑓 → ( ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 16 | 15 | cbvralvw | ⊢ ( ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ∀ 𝑓 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 17 | pweq | ⊢ ( 𝑔 = 𝐴 → 𝒫 𝑔 = 𝒫 𝐴 ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑔 = 𝐴 → ( 𝒫 𝑔 ↑m ω ) = ( 𝒫 𝐴 ↑m ω ) ) |
| 19 | 18 | raleqdv | ⊢ ( 𝑔 = 𝐴 → ( ∀ 𝑓 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 20 | 16 19 | bitrid | ⊢ ( 𝑔 = 𝐴 → ( ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 21 | 20 1 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |