This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . Fin2 sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem40.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| Assertion | fin23lem40 | |- ( A e. Fin2 -> A e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem40.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 2 | elmapi | |- ( f e. ( ~P A ^m _om ) -> f : _om --> ~P A ) |
|
| 3 | simpl | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> A e. Fin2 ) |
|
| 4 | frn | |- ( f : _om --> ~P A -> ran f C_ ~P A ) |
|
| 5 | 4 | ad2antrl | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> ran f C_ ~P A ) |
| 6 | fdm | |- ( f : _om --> ~P A -> dom f = _om ) |
|
| 7 | peano1 | |- (/) e. _om |
|
| 8 | ne0i | |- ( (/) e. _om -> _om =/= (/) ) |
|
| 9 | 7 8 | mp1i | |- ( f : _om --> ~P A -> _om =/= (/) ) |
| 10 | 6 9 | eqnetrd | |- ( f : _om --> ~P A -> dom f =/= (/) ) |
| 11 | dm0rn0 | |- ( dom f = (/) <-> ran f = (/) ) |
|
| 12 | 11 | necon3bii | |- ( dom f =/= (/) <-> ran f =/= (/) ) |
| 13 | 10 12 | sylib | |- ( f : _om --> ~P A -> ran f =/= (/) ) |
| 14 | 13 | ad2antrl | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> ran f =/= (/) ) |
| 15 | ffn | |- ( f : _om --> ~P A -> f Fn _om ) |
|
| 16 | 15 | ad2antrl | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> f Fn _om ) |
| 17 | sspss | |- ( ( f ` suc b ) C_ ( f ` b ) <-> ( ( f ` suc b ) C. ( f ` b ) \/ ( f ` suc b ) = ( f ` b ) ) ) |
|
| 18 | fvex | |- ( f ` b ) e. _V |
|
| 19 | fvex | |- ( f ` suc b ) e. _V |
|
| 20 | 18 19 | brcnv | |- ( ( f ` b ) `' [C.] ( f ` suc b ) <-> ( f ` suc b ) [C.] ( f ` b ) ) |
| 21 | 18 | brrpss | |- ( ( f ` suc b ) [C.] ( f ` b ) <-> ( f ` suc b ) C. ( f ` b ) ) |
| 22 | 20 21 | bitri | |- ( ( f ` b ) `' [C.] ( f ` suc b ) <-> ( f ` suc b ) C. ( f ` b ) ) |
| 23 | eqcom | |- ( ( f ` b ) = ( f ` suc b ) <-> ( f ` suc b ) = ( f ` b ) ) |
|
| 24 | 22 23 | orbi12i | |- ( ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) <-> ( ( f ` suc b ) C. ( f ` b ) \/ ( f ` suc b ) = ( f ` b ) ) ) |
| 25 | 17 24 | sylbb2 | |- ( ( f ` suc b ) C_ ( f ` b ) -> ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) ) |
| 26 | 25 | ralimi | |- ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> A. b e. _om ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) ) |
| 27 | 26 | ad2antll | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> A. b e. _om ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) ) |
| 28 | porpss | |- [C.] Po ran f |
|
| 29 | cnvpo | |- ( [C.] Po ran f <-> `' [C.] Po ran f ) |
|
| 30 | 28 29 | mpbi | |- `' [C.] Po ran f |
| 31 | 30 | a1i | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> `' [C.] Po ran f ) |
| 32 | sornom | |- ( ( f Fn _om /\ A. b e. _om ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) /\ `' [C.] Po ran f ) -> `' [C.] Or ran f ) |
|
| 33 | 16 27 31 32 | syl3anc | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> `' [C.] Or ran f ) |
| 34 | cnvso | |- ( [C.] Or ran f <-> `' [C.] Or ran f ) |
|
| 35 | 33 34 | sylibr | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> [C.] Or ran f ) |
| 36 | fin2i2 | |- ( ( ( A e. Fin2 /\ ran f C_ ~P A ) /\ ( ran f =/= (/) /\ [C.] Or ran f ) ) -> |^| ran f e. ran f ) |
|
| 37 | 3 5 14 35 36 | syl22anc | |- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> |^| ran f e. ran f ) |
| 38 | 37 | expr | |- ( ( A e. Fin2 /\ f : _om --> ~P A ) -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) |
| 39 | 2 38 | sylan2 | |- ( ( A e. Fin2 /\ f e. ( ~P A ^m _om ) ) -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) |
| 40 | 39 | ralrimiva | |- ( A e. Fin2 -> A. f e. ( ~P A ^m _om ) ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) |
| 41 | 1 | isfin3ds | |- ( A e. Fin2 -> ( A e. F <-> A. f e. ( ~P A ^m _om ) ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) ) |
| 42 | 40 41 | mpbird | |- ( A e. Fin2 -> A e. F ) |