This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem40.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| Assertion | fin23lem41 | ⊢ ( 𝐴 ∈ 𝐹 → 𝐴 ∈ FinIII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem40.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 2 | brdomi | ⊢ ( ω ≼ 𝒫 𝐴 → ∃ 𝑏 𝑏 : ω –1-1→ 𝒫 𝐴 ) | |
| 3 | 1 | fin23lem33 | ⊢ ( 𝐴 ∈ 𝐹 → ∃ 𝑐 ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) → ∃ 𝑐 ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) |
| 5 | ssv | ⊢ 𝒫 𝐴 ⊆ V | |
| 6 | f1ss | ⊢ ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝒫 𝐴 ⊆ V ) → 𝑏 : ω –1-1→ V ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → 𝑏 : ω –1-1→ V ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) → 𝑏 : ω –1-1→ V ) |
| 9 | f1f | ⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → 𝑏 : ω ⟶ 𝒫 𝐴 ) | |
| 10 | frn | ⊢ ( 𝑏 : ω ⟶ 𝒫 𝐴 → ran 𝑏 ⊆ 𝒫 𝐴 ) | |
| 11 | uniss | ⊢ ( ran 𝑏 ⊆ 𝒫 𝐴 → ∪ ran 𝑏 ⊆ ∪ 𝒫 𝐴 ) | |
| 12 | 9 10 11 | 3syl | ⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → ∪ ran 𝑏 ⊆ ∪ 𝒫 𝐴 ) |
| 13 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 14 | 12 13 | sseqtrdi | ⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → ∪ ran 𝑏 ⊆ 𝐴 ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) → ∪ ran 𝑏 ⊆ 𝐴 ) |
| 16 | f1eq1 | ⊢ ( 𝑑 = 𝑒 → ( 𝑑 : ω –1-1→ V ↔ 𝑒 : ω –1-1→ V ) ) | |
| 17 | rneq | ⊢ ( 𝑑 = 𝑒 → ran 𝑑 = ran 𝑒 ) | |
| 18 | 17 | unieqd | ⊢ ( 𝑑 = 𝑒 → ∪ ran 𝑑 = ∪ ran 𝑒 ) |
| 19 | 18 | sseq1d | ⊢ ( 𝑑 = 𝑒 → ( ∪ ran 𝑑 ⊆ 𝐴 ↔ ∪ ran 𝑒 ⊆ 𝐴 ) ) |
| 20 | 16 19 | anbi12d | ⊢ ( 𝑑 = 𝑒 → ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) ↔ ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑑 = 𝑒 → ( 𝑐 ‘ 𝑑 ) = ( 𝑐 ‘ 𝑒 ) ) | |
| 22 | f1eq1 | ⊢ ( ( 𝑐 ‘ 𝑑 ) = ( 𝑐 ‘ 𝑒 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ↔ ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝑑 = 𝑒 → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ↔ ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ) ) |
| 24 | 21 | rneqd | ⊢ ( 𝑑 = 𝑒 → ran ( 𝑐 ‘ 𝑑 ) = ran ( 𝑐 ‘ 𝑒 ) ) |
| 25 | 24 | unieqd | ⊢ ( 𝑑 = 𝑒 → ∪ ran ( 𝑐 ‘ 𝑑 ) = ∪ ran ( 𝑐 ‘ 𝑒 ) ) |
| 26 | 25 18 | psseq12d | ⊢ ( 𝑑 = 𝑒 → ( ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ↔ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) |
| 27 | 23 26 | anbi12d | ⊢ ( 𝑑 = 𝑒 → ( ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ↔ ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) |
| 28 | 20 27 | imbi12d | ⊢ ( 𝑑 = 𝑒 → ( ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ↔ ( ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) ) |
| 29 | 28 | cbvalvw | ⊢ ( ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ↔ ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) |
| 30 | 29 | biimpi | ⊢ ( ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) → ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) → ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) |
| 32 | eqid | ⊢ ( rec ( 𝑐 , 𝑏 ) ↾ ω ) = ( rec ( 𝑐 , 𝑏 ) ↾ ω ) | |
| 33 | 1 8 15 31 32 | fin23lem39 | ⊢ ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) → ¬ 𝐴 ∈ 𝐹 ) |
| 34 | 4 33 | exlimddv | ⊢ ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) → ¬ 𝐴 ∈ 𝐹 ) |
| 35 | 34 | pm2.01da | ⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → ¬ 𝐴 ∈ 𝐹 ) |
| 36 | 35 | exlimiv | ⊢ ( ∃ 𝑏 𝑏 : ω –1-1→ 𝒫 𝐴 → ¬ 𝐴 ∈ 𝐹 ) |
| 37 | 2 36 | syl | ⊢ ( ω ≼ 𝒫 𝐴 → ¬ 𝐴 ∈ 𝐹 ) |
| 38 | 37 | con2i | ⊢ ( 𝐴 ∈ 𝐹 → ¬ ω ≼ 𝒫 𝐴 ) |
| 39 | pwexg | ⊢ ( 𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ V ) | |
| 40 | isfin4-2 | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) ) | |
| 41 | 39 40 | syl | ⊢ ( 𝐴 ∈ 𝐹 → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) ) |
| 42 | 38 41 | mpbird | ⊢ ( 𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ FinIV ) |
| 43 | isfin3 | ⊢ ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV ) | |
| 44 | 42 43 | sylibr | ⊢ ( 𝐴 ∈ 𝐹 → 𝐴 ∈ FinIII ) |