This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The residual is also one-to-one. This preserves the induction invariant. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | ||
| fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | ||
| fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | ||
| fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | ||
| fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | ||
| Assertion | fin23lem28 | ⊢ ( 𝑡 : ω –1-1→ V → 𝑍 : ω –1-1→ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 3 | fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | |
| 4 | fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | |
| 5 | fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | |
| 6 | fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | |
| 7 | eqif | ⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) | |
| 8 | 6 7 | mpbi | ⊢ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) |
| 9 | difss | ⊢ ( ω ∖ 𝑃 ) ⊆ ω | |
| 10 | ominf | ⊢ ¬ ω ∈ Fin | |
| 11 | 3 | ssrab3 | ⊢ 𝑃 ⊆ ω |
| 12 | undif | ⊢ ( 𝑃 ⊆ ω ↔ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω ) | |
| 13 | 11 12 | mpbi | ⊢ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω |
| 14 | unfi | ⊢ ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) ∈ Fin ) | |
| 15 | 13 14 | eqeltrrid | ⊢ ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ω ∈ Fin ) |
| 16 | 15 | ex | ⊢ ( 𝑃 ∈ Fin → ( ( ω ∖ 𝑃 ) ∈ Fin → ω ∈ Fin ) ) |
| 17 | 10 16 | mtoi | ⊢ ( 𝑃 ∈ Fin → ¬ ( ω ∖ 𝑃 ) ∈ Fin ) |
| 18 | 5 | fin23lem22 | ⊢ ( ( ( ω ∖ 𝑃 ) ⊆ ω ∧ ¬ ( ω ∖ 𝑃 ) ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
| 19 | 9 17 18 | sylancr | ⊢ ( 𝑃 ∈ Fin → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
| 21 | f1of1 | ⊢ ( 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) → 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) ) | |
| 22 | f1ss | ⊢ ( ( 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) ∧ ( ω ∖ 𝑃 ) ⊆ ω ) → 𝑅 : ω –1-1→ ω ) | |
| 23 | 9 22 | mpan2 | ⊢ ( 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) → 𝑅 : ω –1-1→ ω ) |
| 24 | 20 21 23 | 3syl | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → 𝑅 : ω –1-1→ ω ) |
| 25 | f1co | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑅 : ω –1-1→ ω ) → ( 𝑡 ∘ 𝑅 ) : ω –1-1→ V ) | |
| 26 | 24 25 | syldan | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → ( 𝑡 ∘ 𝑅 ) : ω –1-1→ V ) |
| 27 | f1eq1 | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( 𝑍 : ω –1-1→ V ↔ ( 𝑡 ∘ 𝑅 ) : ω –1-1→ V ) ) | |
| 28 | 26 27 | syl5ibrcom | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → 𝑍 : ω –1-1→ V ) ) |
| 29 | 28 | impr | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ) → 𝑍 : ω –1-1→ V ) |
| 30 | fvex | ⊢ ( 𝑡 ‘ 𝑧 ) ∈ V | |
| 31 | 30 | difexi | ⊢ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ∈ V |
| 32 | 31 | rgenw | ⊢ ∀ 𝑧 ∈ 𝑃 ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ∈ V |
| 33 | eqid | ⊢ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) | |
| 34 | 33 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝑃 ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ∈ V ↔ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 ⟶ V ) |
| 35 | 32 34 | mpbi | ⊢ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 ⟶ V |
| 36 | 35 | a1i | ⊢ ( 𝑡 : ω –1-1→ V → ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 ⟶ V ) |
| 37 | fveq2 | ⊢ ( 𝑧 = 𝑎 → ( 𝑡 ‘ 𝑧 ) = ( 𝑡 ‘ 𝑎 ) ) | |
| 38 | 37 | difeq1d | ⊢ ( 𝑧 = 𝑎 → ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) |
| 39 | fvex | ⊢ ( 𝑡 ‘ 𝑎 ) ∈ V | |
| 40 | 39 | difexi | ⊢ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ∈ V |
| 41 | 38 33 40 | fvmpt | ⊢ ( 𝑎 ∈ 𝑃 → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) |
| 42 | 41 | ad2antrl | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) |
| 43 | fveq2 | ⊢ ( 𝑧 = 𝑏 → ( 𝑡 ‘ 𝑧 ) = ( 𝑡 ‘ 𝑏 ) ) | |
| 44 | 43 | difeq1d | ⊢ ( 𝑧 = 𝑏 → ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) |
| 45 | fvex | ⊢ ( 𝑡 ‘ 𝑏 ) ∈ V | |
| 46 | 45 | difexi | ⊢ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ∈ V |
| 47 | 44 33 46 | fvmpt | ⊢ ( 𝑏 ∈ 𝑃 → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) |
| 48 | 47 | ad2antll | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) |
| 49 | 42 48 | eqeq12d | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) ↔ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) ) |
| 50 | uneq2 | ⊢ ( ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) → ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) = ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) ) | |
| 51 | fveq2 | ⊢ ( 𝑣 = 𝑎 → ( 𝑡 ‘ 𝑣 ) = ( 𝑡 ‘ 𝑎 ) ) | |
| 52 | 51 | sseq2d | ⊢ ( 𝑣 = 𝑎 → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ) ) |
| 53 | 52 3 | elrab2 | ⊢ ( 𝑎 ∈ 𝑃 ↔ ( 𝑎 ∈ ω ∧ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ) ) |
| 54 | 53 | simprbi | ⊢ ( 𝑎 ∈ 𝑃 → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ) |
| 55 | 54 | ad2antrl | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ) |
| 56 | undif | ⊢ ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ↔ ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑡 ‘ 𝑎 ) ) | |
| 57 | 55 56 | sylib | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑡 ‘ 𝑎 ) ) |
| 58 | fveq2 | ⊢ ( 𝑣 = 𝑏 → ( 𝑡 ‘ 𝑣 ) = ( 𝑡 ‘ 𝑏 ) ) | |
| 59 | 58 | sseq2d | ⊢ ( 𝑣 = 𝑏 → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ) ) |
| 60 | 59 3 | elrab2 | ⊢ ( 𝑏 ∈ 𝑃 ↔ ( 𝑏 ∈ ω ∧ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ) ) |
| 61 | 60 | simprbi | ⊢ ( 𝑏 ∈ 𝑃 → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ) |
| 62 | 61 | ad2antll | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ) |
| 63 | undif | ⊢ ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ↔ ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑡 ‘ 𝑏 ) ) | |
| 64 | 62 63 | sylib | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑡 ‘ 𝑏 ) ) |
| 65 | 57 64 | eqeq12d | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) = ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) ↔ ( 𝑡 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑏 ) ) ) |
| 66 | 50 65 | imbitrid | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) → ( 𝑡 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑏 ) ) ) |
| 67 | 11 | sseli | ⊢ ( 𝑎 ∈ 𝑃 → 𝑎 ∈ ω ) |
| 68 | 11 | sseli | ⊢ ( 𝑏 ∈ 𝑃 → 𝑏 ∈ ω ) |
| 69 | 67 68 | anim12i | ⊢ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) |
| 70 | f1fveq | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( 𝑡 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) | |
| 71 | 69 70 | sylan2 | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝑡 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 72 | 66 71 | sylibd | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) → 𝑎 = 𝑏 ) ) |
| 73 | 49 72 | sylbid | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 74 | 73 | ralrimivva | ⊢ ( 𝑡 : ω –1-1→ V → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 75 | dff13 | ⊢ ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 –1-1→ V ↔ ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 ⟶ V ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) | |
| 76 | 36 74 75 | sylanbrc | ⊢ ( 𝑡 : ω –1-1→ V → ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 –1-1→ V ) |
| 77 | 4 | fin23lem22 | ⊢ ( ( 𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin ) → 𝑄 : ω –1-1-onto→ 𝑃 ) |
| 78 | f1of1 | ⊢ ( 𝑄 : ω –1-1-onto→ 𝑃 → 𝑄 : ω –1-1→ 𝑃 ) | |
| 79 | 77 78 | syl | ⊢ ( ( 𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin ) → 𝑄 : ω –1-1→ 𝑃 ) |
| 80 | 11 79 | mpan | ⊢ ( ¬ 𝑃 ∈ Fin → 𝑄 : ω –1-1→ 𝑃 ) |
| 81 | f1co | ⊢ ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 –1-1→ V ∧ 𝑄 : ω –1-1→ 𝑃 ) → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V ) | |
| 82 | 76 80 81 | syl2an | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ¬ 𝑃 ∈ Fin ) → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V ) |
| 83 | f1eq1 | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ( 𝑍 : ω –1-1→ V ↔ ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V ) ) | |
| 84 | 82 83 | syl5ibrcom | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ¬ 𝑃 ∈ Fin ) → ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → 𝑍 : ω –1-1→ V ) ) |
| 85 | 84 | impr | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → 𝑍 : ω –1-1→ V ) |
| 86 | 29 85 | jaodan | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) → 𝑍 : ω –1-1→ V ) |
| 87 | 8 86 | mpan2 | ⊢ ( 𝑡 : ω –1-1→ V → 𝑍 : ω –1-1→ V ) |