This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The residual is also one-to-one. This preserves the induction invariant. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
||
| fin23lem.b | |- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
||
| fin23lem.c | |- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
||
| fin23lem.d | |- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
||
| fin23lem.e | |- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
||
| Assertion | fin23lem28 | |- ( t : _om -1-1-> _V -> Z : _om -1-1-> _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 3 | fin23lem.b | |- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
|
| 4 | fin23lem.c | |- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
|
| 5 | fin23lem.d | |- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
|
| 6 | fin23lem.e | |- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
|
| 7 | eqif | |- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) <-> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
|
| 8 | 6 7 | mpbi | |- ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) |
| 9 | difss | |- ( _om \ P ) C_ _om |
|
| 10 | ominf | |- -. _om e. Fin |
|
| 11 | 3 | ssrab3 | |- P C_ _om |
| 12 | undif | |- ( P C_ _om <-> ( P u. ( _om \ P ) ) = _om ) |
|
| 13 | 11 12 | mpbi | |- ( P u. ( _om \ P ) ) = _om |
| 14 | unfi | |- ( ( P e. Fin /\ ( _om \ P ) e. Fin ) -> ( P u. ( _om \ P ) ) e. Fin ) |
|
| 15 | 13 14 | eqeltrrid | |- ( ( P e. Fin /\ ( _om \ P ) e. Fin ) -> _om e. Fin ) |
| 16 | 15 | ex | |- ( P e. Fin -> ( ( _om \ P ) e. Fin -> _om e. Fin ) ) |
| 17 | 10 16 | mtoi | |- ( P e. Fin -> -. ( _om \ P ) e. Fin ) |
| 18 | 5 | fin23lem22 | |- ( ( ( _om \ P ) C_ _om /\ -. ( _om \ P ) e. Fin ) -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 19 | 9 17 18 | sylancr | |- ( P e. Fin -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 20 | 19 | adantl | |- ( ( t : _om -1-1-> _V /\ P e. Fin ) -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 21 | f1of1 | |- ( R : _om -1-1-onto-> ( _om \ P ) -> R : _om -1-1-> ( _om \ P ) ) |
|
| 22 | f1ss | |- ( ( R : _om -1-1-> ( _om \ P ) /\ ( _om \ P ) C_ _om ) -> R : _om -1-1-> _om ) |
|
| 23 | 9 22 | mpan2 | |- ( R : _om -1-1-> ( _om \ P ) -> R : _om -1-1-> _om ) |
| 24 | 20 21 23 | 3syl | |- ( ( t : _om -1-1-> _V /\ P e. Fin ) -> R : _om -1-1-> _om ) |
| 25 | f1co | |- ( ( t : _om -1-1-> _V /\ R : _om -1-1-> _om ) -> ( t o. R ) : _om -1-1-> _V ) |
|
| 26 | 24 25 | syldan | |- ( ( t : _om -1-1-> _V /\ P e. Fin ) -> ( t o. R ) : _om -1-1-> _V ) |
| 27 | f1eq1 | |- ( Z = ( t o. R ) -> ( Z : _om -1-1-> _V <-> ( t o. R ) : _om -1-1-> _V ) ) |
|
| 28 | 26 27 | syl5ibrcom | |- ( ( t : _om -1-1-> _V /\ P e. Fin ) -> ( Z = ( t o. R ) -> Z : _om -1-1-> _V ) ) |
| 29 | 28 | impr | |- ( ( t : _om -1-1-> _V /\ ( P e. Fin /\ Z = ( t o. R ) ) ) -> Z : _om -1-1-> _V ) |
| 30 | fvex | |- ( t ` z ) e. _V |
|
| 31 | 30 | difexi | |- ( ( t ` z ) \ |^| ran U ) e. _V |
| 32 | 31 | rgenw | |- A. z e. P ( ( t ` z ) \ |^| ran U ) e. _V |
| 33 | eqid | |- ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
|
| 34 | 33 | fmpt | |- ( A. z e. P ( ( t ` z ) \ |^| ran U ) e. _V <-> ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P --> _V ) |
| 35 | 32 34 | mpbi | |- ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P --> _V |
| 36 | 35 | a1i | |- ( t : _om -1-1-> _V -> ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P --> _V ) |
| 37 | fveq2 | |- ( z = a -> ( t ` z ) = ( t ` a ) ) |
|
| 38 | 37 | difeq1d | |- ( z = a -> ( ( t ` z ) \ |^| ran U ) = ( ( t ` a ) \ |^| ran U ) ) |
| 39 | fvex | |- ( t ` a ) e. _V |
|
| 40 | 39 | difexi | |- ( ( t ` a ) \ |^| ran U ) e. _V |
| 41 | 38 33 40 | fvmpt | |- ( a e. P -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( t ` a ) \ |^| ran U ) ) |
| 42 | 41 | ad2antrl | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( t ` a ) \ |^| ran U ) ) |
| 43 | fveq2 | |- ( z = b -> ( t ` z ) = ( t ` b ) ) |
|
| 44 | 43 | difeq1d | |- ( z = b -> ( ( t ` z ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) ) |
| 45 | fvex | |- ( t ` b ) e. _V |
|
| 46 | 45 | difexi | |- ( ( t ` b ) \ |^| ran U ) e. _V |
| 47 | 44 33 46 | fvmpt | |- ( b e. P -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) = ( ( t ` b ) \ |^| ran U ) ) |
| 48 | 47 | ad2antll | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) = ( ( t ` b ) \ |^| ran U ) ) |
| 49 | 42 48 | eqeq12d | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) <-> ( ( t ` a ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) ) ) |
| 50 | uneq2 | |- ( ( ( t ` a ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) -> ( |^| ran U u. ( ( t ` a ) \ |^| ran U ) ) = ( |^| ran U u. ( ( t ` b ) \ |^| ran U ) ) ) |
|
| 51 | fveq2 | |- ( v = a -> ( t ` v ) = ( t ` a ) ) |
|
| 52 | 51 | sseq2d | |- ( v = a -> ( |^| ran U C_ ( t ` v ) <-> |^| ran U C_ ( t ` a ) ) ) |
| 53 | 52 3 | elrab2 | |- ( a e. P <-> ( a e. _om /\ |^| ran U C_ ( t ` a ) ) ) |
| 54 | 53 | simprbi | |- ( a e. P -> |^| ran U C_ ( t ` a ) ) |
| 55 | 54 | ad2antrl | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> |^| ran U C_ ( t ` a ) ) |
| 56 | undif | |- ( |^| ran U C_ ( t ` a ) <-> ( |^| ran U u. ( ( t ` a ) \ |^| ran U ) ) = ( t ` a ) ) |
|
| 57 | 55 56 | sylib | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( |^| ran U u. ( ( t ` a ) \ |^| ran U ) ) = ( t ` a ) ) |
| 58 | fveq2 | |- ( v = b -> ( t ` v ) = ( t ` b ) ) |
|
| 59 | 58 | sseq2d | |- ( v = b -> ( |^| ran U C_ ( t ` v ) <-> |^| ran U C_ ( t ` b ) ) ) |
| 60 | 59 3 | elrab2 | |- ( b e. P <-> ( b e. _om /\ |^| ran U C_ ( t ` b ) ) ) |
| 61 | 60 | simprbi | |- ( b e. P -> |^| ran U C_ ( t ` b ) ) |
| 62 | 61 | ad2antll | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> |^| ran U C_ ( t ` b ) ) |
| 63 | undif | |- ( |^| ran U C_ ( t ` b ) <-> ( |^| ran U u. ( ( t ` b ) \ |^| ran U ) ) = ( t ` b ) ) |
|
| 64 | 62 63 | sylib | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( |^| ran U u. ( ( t ` b ) \ |^| ran U ) ) = ( t ` b ) ) |
| 65 | 57 64 | eqeq12d | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( |^| ran U u. ( ( t ` a ) \ |^| ran U ) ) = ( |^| ran U u. ( ( t ` b ) \ |^| ran U ) ) <-> ( t ` a ) = ( t ` b ) ) ) |
| 66 | 50 65 | imbitrid | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( ( t ` a ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) -> ( t ` a ) = ( t ` b ) ) ) |
| 67 | 11 | sseli | |- ( a e. P -> a e. _om ) |
| 68 | 11 | sseli | |- ( b e. P -> b e. _om ) |
| 69 | 67 68 | anim12i | |- ( ( a e. P /\ b e. P ) -> ( a e. _om /\ b e. _om ) ) |
| 70 | f1fveq | |- ( ( t : _om -1-1-> _V /\ ( a e. _om /\ b e. _om ) ) -> ( ( t ` a ) = ( t ` b ) <-> a = b ) ) |
|
| 71 | 69 70 | sylan2 | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( t ` a ) = ( t ` b ) <-> a = b ) ) |
| 72 | 66 71 | sylibd | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( ( t ` a ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) -> a = b ) ) |
| 73 | 49 72 | sylbid | |- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) -> a = b ) ) |
| 74 | 73 | ralrimivva | |- ( t : _om -1-1-> _V -> A. a e. P A. b e. P ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) -> a = b ) ) |
| 75 | dff13 | |- ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P -1-1-> _V <-> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P --> _V /\ A. a e. P A. b e. P ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) -> a = b ) ) ) |
|
| 76 | 36 74 75 | sylanbrc | |- ( t : _om -1-1-> _V -> ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P -1-1-> _V ) |
| 77 | 4 | fin23lem22 | |- ( ( P C_ _om /\ -. P e. Fin ) -> Q : _om -1-1-onto-> P ) |
| 78 | f1of1 | |- ( Q : _om -1-1-onto-> P -> Q : _om -1-1-> P ) |
|
| 79 | 77 78 | syl | |- ( ( P C_ _om /\ -. P e. Fin ) -> Q : _om -1-1-> P ) |
| 80 | 11 79 | mpan | |- ( -. P e. Fin -> Q : _om -1-1-> P ) |
| 81 | f1co | |- ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P -1-1-> _V /\ Q : _om -1-1-> P ) -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) : _om -1-1-> _V ) |
|
| 82 | 76 80 81 | syl2an | |- ( ( t : _om -1-1-> _V /\ -. P e. Fin ) -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) : _om -1-1-> _V ) |
| 83 | f1eq1 | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ( Z : _om -1-1-> _V <-> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) : _om -1-1-> _V ) ) |
|
| 84 | 82 83 | syl5ibrcom | |- ( ( t : _om -1-1-> _V /\ -. P e. Fin ) -> ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> Z : _om -1-1-> _V ) ) |
| 85 | 84 | impr | |- ( ( t : _om -1-1-> _V /\ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) -> Z : _om -1-1-> _V ) |
| 86 | 29 85 | jaodan | |- ( ( t : _om -1-1-> _V /\ ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) -> Z : _om -1-1-> _V ) |
| 87 | 8 86 | mpan2 | |- ( t : _om -1-1-> _V -> Z : _om -1-1-> _V ) |