This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping constructed in fin23lem22 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem22.b | ⊢ 𝐶 = ( 𝑖 ∈ ω ↦ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) | |
| Assertion | fin23lem27 | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 Isom E , E ( ω , 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem22.b | ⊢ 𝐶 = ( 𝑖 ∈ ω ↦ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) | |
| 2 | ordom | ⊢ Ord ω | |
| 3 | ordwe | ⊢ ( Ord ω → E We ω ) | |
| 4 | weso | ⊢ ( E We ω → E Or ω ) | |
| 5 | 2 3 4 | mp2b | ⊢ E Or ω |
| 6 | 5 | a1i | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → E Or ω ) |
| 7 | sopo | ⊢ ( E Or ω → E Po ω ) | |
| 8 | 5 7 | ax-mp | ⊢ E Po ω |
| 9 | poss | ⊢ ( 𝑆 ⊆ ω → ( E Po ω → E Po 𝑆 ) ) | |
| 10 | 8 9 | mpi | ⊢ ( 𝑆 ⊆ ω → E Po 𝑆 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → E Po 𝑆 ) |
| 12 | 1 | fin23lem22 | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 : ω –1-1-onto→ 𝑆 ) |
| 13 | f1ofo | ⊢ ( 𝐶 : ω –1-1-onto→ 𝑆 → 𝐶 : ω –onto→ 𝑆 ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 : ω –onto→ 𝑆 ) |
| 15 | nnsdomel | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ∈ 𝑏 ↔ 𝑎 ≺ 𝑏 ) ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ∈ 𝑏 ↔ 𝑎 ≺ 𝑏 ) ) |
| 17 | 16 | biimpd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ∈ 𝑏 → 𝑎 ≺ 𝑏 ) ) |
| 18 | fin23lem23 | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) | |
| 19 | 18 | adantrr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) |
| 20 | ineq1 | ⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∩ 𝑆 ) = ( 𝑖 ∩ 𝑆 ) ) | |
| 21 | 20 | breq1d | ⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ↔ ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 22 | 21 | cbvreuvw | ⊢ ( ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ↔ ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ) |
| 23 | 19 22 | sylib | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ) |
| 24 | nfv | ⊢ Ⅎ 𝑖 ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 | |
| 25 | 21 | cbvriotavw | ⊢ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) = ( ℩ 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ) |
| 26 | ineq1 | ⊢ ( 𝑖 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) → ( 𝑖 ∩ 𝑆 ) = ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ) | |
| 27 | 26 | breq1d | ⊢ ( 𝑖 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) → ( ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ↔ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 28 | 24 25 27 | riotaprop | ⊢ ( ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ 𝑆 ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 29 | 23 28 | syl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ 𝑆 ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 30 | 29 | simprd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) |
| 31 | 30 | adantrr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) |
| 32 | simprr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → 𝑎 ≺ 𝑏 ) | |
| 33 | fin23lem23 | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) | |
| 34 | 33 | adantrl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) |
| 35 | 20 | breq1d | ⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ↔ ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 36 | 35 | cbvreuvw | ⊢ ( ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ↔ ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ) |
| 37 | 34 36 | sylib | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ) |
| 38 | nfv | ⊢ Ⅎ 𝑖 ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 | |
| 39 | 35 | cbvriotavw | ⊢ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) = ( ℩ 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ) |
| 40 | ineq1 | ⊢ ( 𝑖 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) → ( 𝑖 ∩ 𝑆 ) = ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) | |
| 41 | 40 | breq1d | ⊢ ( 𝑖 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) → ( ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ↔ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 42 | 38 39 41 | riotaprop | ⊢ ( ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ 𝑆 ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 43 | 37 42 | syl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ 𝑆 ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 44 | 43 | simprd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 ) |
| 45 | 44 | ensymd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑏 ≈ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 46 | 45 | adantrr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → 𝑏 ≈ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 47 | sdomentr | ⊢ ( ( 𝑎 ≺ 𝑏 ∧ 𝑏 ≈ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) → 𝑎 ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) | |
| 48 | 32 46 47 | syl2anc | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → 𝑎 ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 49 | ensdomtr | ⊢ ( ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ∧ 𝑎 ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) | |
| 50 | 31 48 49 | syl2anc | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 51 | 50 | expr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ≺ 𝑏 → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) ) |
| 52 | simpll | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑆 ⊆ ω ) | |
| 53 | omsson | ⊢ ω ⊆ On | |
| 54 | 52 53 | sstrdi | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑆 ⊆ On ) |
| 55 | 29 | simpld | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ 𝑆 ) |
| 56 | 54 55 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ On ) |
| 57 | 43 | simpld | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ 𝑆 ) |
| 58 | 54 57 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ On ) |
| 59 | onsdominel | ⊢ ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ On ∧ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ On ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) | |
| 60 | 59 | 3expia | ⊢ ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ On ∧ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ On ) → ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) ) |
| 61 | 56 58 60 | syl2anc | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) ) |
| 62 | 17 51 61 | 3syld | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ∈ 𝑏 → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) ) |
| 63 | breq2 | ⊢ ( 𝑖 = 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) | |
| 64 | 63 | riotabidv | ⊢ ( 𝑖 = 𝑎 → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 65 | simprl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑎 ∈ ω ) | |
| 66 | 1 64 65 55 | fvmptd3 | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝐶 ‘ 𝑎 ) = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 67 | breq2 | ⊢ ( 𝑖 = 𝑏 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) | |
| 68 | 67 | riotabidv | ⊢ ( 𝑖 = 𝑏 → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 69 | simprr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑏 ∈ ω ) | |
| 70 | 1 68 69 57 | fvmptd3 | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝐶 ‘ 𝑏 ) = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 71 | 66 70 | eleq12d | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( 𝐶 ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑏 ) ↔ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) ) |
| 72 | 62 71 | sylibrd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ∈ 𝑏 → ( 𝐶 ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑏 ) ) ) |
| 73 | epel | ⊢ ( 𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏 ) | |
| 74 | fvex | ⊢ ( 𝐶 ‘ 𝑏 ) ∈ V | |
| 75 | 74 | epeli | ⊢ ( ( 𝐶 ‘ 𝑎 ) E ( 𝐶 ‘ 𝑏 ) ↔ ( 𝐶 ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑏 ) ) |
| 76 | 72 73 75 | 3imtr4g | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 E 𝑏 → ( 𝐶 ‘ 𝑎 ) E ( 𝐶 ‘ 𝑏 ) ) ) |
| 77 | 76 | ralrimivva | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∀ 𝑎 ∈ ω ∀ 𝑏 ∈ ω ( 𝑎 E 𝑏 → ( 𝐶 ‘ 𝑎 ) E ( 𝐶 ‘ 𝑏 ) ) ) |
| 78 | soisoi | ⊢ ( ( ( E Or ω ∧ E Po 𝑆 ) ∧ ( 𝐶 : ω –onto→ 𝑆 ∧ ∀ 𝑎 ∈ ω ∀ 𝑏 ∈ ω ( 𝑎 E 𝑏 → ( 𝐶 ‘ 𝑎 ) E ( 𝐶 ‘ 𝑏 ) ) ) ) → 𝐶 Isom E , E ( ω , 𝑆 ) ) | |
| 79 | 6 11 14 77 78 | syl22anc | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 Isom E , E ( ω , 𝑆 ) ) |