This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping constructed in fin23lem22 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem22.b | |- C = ( i e. _om |-> ( iota_ j e. S ( j i^i S ) ~~ i ) ) |
|
| Assertion | fin23lem27 | |- ( ( S C_ _om /\ -. S e. Fin ) -> C Isom _E , _E ( _om , S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem22.b | |- C = ( i e. _om |-> ( iota_ j e. S ( j i^i S ) ~~ i ) ) |
|
| 2 | ordom | |- Ord _om |
|
| 3 | ordwe | |- ( Ord _om -> _E We _om ) |
|
| 4 | weso | |- ( _E We _om -> _E Or _om ) |
|
| 5 | 2 3 4 | mp2b | |- _E Or _om |
| 6 | 5 | a1i | |- ( ( S C_ _om /\ -. S e. Fin ) -> _E Or _om ) |
| 7 | sopo | |- ( _E Or _om -> _E Po _om ) |
|
| 8 | 5 7 | ax-mp | |- _E Po _om |
| 9 | poss | |- ( S C_ _om -> ( _E Po _om -> _E Po S ) ) |
|
| 10 | 8 9 | mpi | |- ( S C_ _om -> _E Po S ) |
| 11 | 10 | adantr | |- ( ( S C_ _om /\ -. S e. Fin ) -> _E Po S ) |
| 12 | 1 | fin23lem22 | |- ( ( S C_ _om /\ -. S e. Fin ) -> C : _om -1-1-onto-> S ) |
| 13 | f1ofo | |- ( C : _om -1-1-onto-> S -> C : _om -onto-> S ) |
|
| 14 | 12 13 | syl | |- ( ( S C_ _om /\ -. S e. Fin ) -> C : _om -onto-> S ) |
| 15 | nnsdomel | |- ( ( a e. _om /\ b e. _om ) -> ( a e. b <-> a ~< b ) ) |
|
| 16 | 15 | adantl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b <-> a ~< b ) ) |
| 17 | 16 | biimpd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> a ~< b ) ) |
| 18 | fin23lem23 | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ a e. _om ) -> E! j e. S ( j i^i S ) ~~ a ) |
|
| 19 | 18 | adantrr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! j e. S ( j i^i S ) ~~ a ) |
| 20 | ineq1 | |- ( j = i -> ( j i^i S ) = ( i i^i S ) ) |
|
| 21 | 20 | breq1d | |- ( j = i -> ( ( j i^i S ) ~~ a <-> ( i i^i S ) ~~ a ) ) |
| 22 | 21 | cbvreuvw | |- ( E! j e. S ( j i^i S ) ~~ a <-> E! i e. S ( i i^i S ) ~~ a ) |
| 23 | 19 22 | sylib | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! i e. S ( i i^i S ) ~~ a ) |
| 24 | nfv | |- F/ i ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a |
|
| 25 | 21 | cbvriotavw | |- ( iota_ j e. S ( j i^i S ) ~~ a ) = ( iota_ i e. S ( i i^i S ) ~~ a ) |
| 26 | ineq1 | |- ( i = ( iota_ j e. S ( j i^i S ) ~~ a ) -> ( i i^i S ) = ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ) |
|
| 27 | 26 | breq1d | |- ( i = ( iota_ j e. S ( j i^i S ) ~~ a ) -> ( ( i i^i S ) ~~ a <-> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
| 28 | 24 25 27 | riotaprop | |- ( E! i e. S ( i i^i S ) ~~ a -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
| 29 | 23 28 | syl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
| 30 | 29 | simprd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) |
| 31 | 30 | adantrr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) |
| 32 | simprr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> a ~< b ) |
|
| 33 | fin23lem23 | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ b e. _om ) -> E! j e. S ( j i^i S ) ~~ b ) |
|
| 34 | 33 | adantrl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! j e. S ( j i^i S ) ~~ b ) |
| 35 | 20 | breq1d | |- ( j = i -> ( ( j i^i S ) ~~ b <-> ( i i^i S ) ~~ b ) ) |
| 36 | 35 | cbvreuvw | |- ( E! j e. S ( j i^i S ) ~~ b <-> E! i e. S ( i i^i S ) ~~ b ) |
| 37 | 34 36 | sylib | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! i e. S ( i i^i S ) ~~ b ) |
| 38 | nfv | |- F/ i ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b |
|
| 39 | 35 | cbvriotavw | |- ( iota_ j e. S ( j i^i S ) ~~ b ) = ( iota_ i e. S ( i i^i S ) ~~ b ) |
| 40 | ineq1 | |- ( i = ( iota_ j e. S ( j i^i S ) ~~ b ) -> ( i i^i S ) = ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
|
| 41 | 40 | breq1d | |- ( i = ( iota_ j e. S ( j i^i S ) ~~ b ) -> ( ( i i^i S ) ~~ b <-> ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
| 42 | 38 39 41 | riotaprop | |- ( E! i e. S ( i i^i S ) ~~ b -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
| 43 | 37 42 | syl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
| 44 | 43 | simprd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) |
| 45 | 44 | ensymd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 46 | 45 | adantrr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 47 | sdomentr | |- ( ( a ~< b /\ b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
|
| 48 | 32 46 47 | syl2anc | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 49 | ensdomtr | |- ( ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a /\ a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
|
| 50 | 31 48 49 | syl2anc | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 51 | 50 | expr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a ~< b -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) ) |
| 52 | simpll | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> S C_ _om ) |
|
| 53 | omsson | |- _om C_ On |
|
| 54 | 52 53 | sstrdi | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> S C_ On ) |
| 55 | 29 | simpld | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. S ) |
| 56 | 54 55 | sseldd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. On ) |
| 57 | 43 | simpld | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ b ) e. S ) |
| 58 | 54 57 | sseldd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ b ) e. On ) |
| 59 | onsdominel | |- ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. On /\ ( iota_ j e. S ( j i^i S ) ~~ b ) e. On /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
|
| 60 | 59 | 3expia | |- ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. On /\ ( iota_ j e. S ( j i^i S ) ~~ b ) e. On ) -> ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
| 61 | 56 58 60 | syl2anc | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
| 62 | 17 51 61 | 3syld | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
| 63 | breq2 | |- ( i = a -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ a ) ) |
|
| 64 | 63 | riotabidv | |- ( i = a -> ( iota_ j e. S ( j i^i S ) ~~ i ) = ( iota_ j e. S ( j i^i S ) ~~ a ) ) |
| 65 | simprl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> a e. _om ) |
|
| 66 | 1 64 65 55 | fvmptd3 | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( C ` a ) = ( iota_ j e. S ( j i^i S ) ~~ a ) ) |
| 67 | breq2 | |- ( i = b -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ b ) ) |
|
| 68 | 67 | riotabidv | |- ( i = b -> ( iota_ j e. S ( j i^i S ) ~~ i ) = ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
| 69 | simprr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> b e. _om ) |
|
| 70 | 1 68 69 57 | fvmptd3 | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( C ` b ) = ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
| 71 | 66 70 | eleq12d | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( C ` a ) e. ( C ` b ) <-> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
| 72 | 62 71 | sylibrd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> ( C ` a ) e. ( C ` b ) ) ) |
| 73 | epel | |- ( a _E b <-> a e. b ) |
|
| 74 | fvex | |- ( C ` b ) e. _V |
|
| 75 | 74 | epeli | |- ( ( C ` a ) _E ( C ` b ) <-> ( C ` a ) e. ( C ` b ) ) |
| 76 | 72 73 75 | 3imtr4g | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) |
| 77 | 76 | ralrimivva | |- ( ( S C_ _om /\ -. S e. Fin ) -> A. a e. _om A. b e. _om ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) |
| 78 | soisoi | |- ( ( ( _E Or _om /\ _E Po S ) /\ ( C : _om -onto-> S /\ A. a e. _om A. b e. _om ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) ) -> C Isom _E , _E ( _om , S ) ) |
|
| 79 | 6 11 14 77 78 | syl22anc | |- ( ( S C_ _om /\ -. S e. Fin ) -> C Isom _E , _E ( _om , S ) ) |