This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnsdomel | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardnn | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) = 𝐴 ) | |
| 2 | cardnn | ⊢ ( 𝐵 ∈ ω → ( card ‘ 𝐵 ) = 𝐵 ) | |
| 3 | eleq12 | ⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( card ‘ 𝐵 ) = 𝐵 ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴 ∈ 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴 ∈ 𝐵 ) ) |
| 5 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 6 | onenon | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ dom card ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ dom card ) |
| 8 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 9 | onenon | ⊢ ( 𝐵 ∈ On → 𝐵 ∈ dom card ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ dom card ) |
| 11 | cardsdom2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴 ≺ 𝐵 ) ) | |
| 12 | 7 10 11 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴 ≺ 𝐵 ) ) |
| 13 | 4 12 | bitr3d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵 ) ) |