This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsdominel | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) → 𝐴 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ontri1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 3 | inex1g | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∩ 𝐶 ) ∈ V ) | |
| 4 | ssrin | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∩ 𝐶 ) ⊆ ( 𝐴 ∩ 𝐶 ) ) | |
| 5 | ssdomg | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∈ V → ( ( 𝐵 ∩ 𝐶 ) ⊆ ( 𝐴 ∩ 𝐶 ) → ( 𝐵 ∩ 𝐶 ) ≼ ( 𝐴 ∩ 𝐶 ) ) ) | |
| 6 | 3 4 5 | syl2im | ⊢ ( 𝐴 ∈ On → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∩ 𝐶 ) ≼ ( 𝐴 ∩ 𝐶 ) ) ) |
| 7 | domnsym | ⊢ ( ( 𝐵 ∩ 𝐶 ) ≼ ( 𝐴 ∩ 𝐶 ) → ¬ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) | |
| 8 | 6 7 | syl6 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ⊆ 𝐴 → ¬ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 → ¬ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) ) |
| 10 | 2 9 | sylbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ∈ 𝐵 → ¬ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) ) |
| 11 | 10 | con4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) → 𝐴 ∈ 𝐵 ) ) |
| 12 | 11 | 3impia | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) → 𝐴 ∈ 𝐵 ) |