This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with L = 0 (see opfi1ind ) or L = 1 . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fi1uzind.f | ⊢ 𝐹 ∈ V | |
| fi1uzind.l | ⊢ 𝐿 ∈ ℕ0 | ||
| fi1uzind.1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) | ||
| fi1uzind.2 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) | ||
| fi1uzind.3 | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 ∈ 𝑣 ) → [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) | ||
| fi1uzind.4 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) | ||
| fi1uzind.base | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) | ||
| fi1uzind.step | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) | ||
| Assertion | fi1uzind | ⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fi1uzind.f | ⊢ 𝐹 ∈ V | |
| 2 | fi1uzind.l | ⊢ 𝐿 ∈ ℕ0 | |
| 3 | fi1uzind.1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) | |
| 4 | fi1uzind.2 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) | |
| 5 | fi1uzind.3 | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 ∈ 𝑣 ) → [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) | |
| 6 | fi1uzind.4 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) | |
| 7 | fi1uzind.base | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) | |
| 8 | fi1uzind.step | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) | |
| 9 | dfclel | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ↔ ∃ 𝑛 ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ) | |
| 10 | nn0z | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ ) | |
| 11 | 2 10 | mp1i | ⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝐿 ∈ ℤ ) |
| 12 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝑛 ∈ ℤ ) |
| 14 | breq2 | ⊢ ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ↔ 𝐿 ≤ 𝑛 ) ) | |
| 15 | 14 | eqcoms | ⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ↔ 𝐿 ≤ 𝑛 ) ) |
| 16 | 15 | biimpcd | ⊢ ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → ( 𝑛 = ( ♯ ‘ 𝑉 ) → 𝐿 ≤ 𝑛 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 = ( ♯ ‘ 𝑉 ) → 𝐿 ≤ 𝑛 ) ) |
| 18 | 17 | imp | ⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝐿 ≤ 𝑛 ) |
| 19 | eqeq1 | ⊢ ( 𝑥 = 𝐿 → ( 𝑥 = ( ♯ ‘ 𝑣 ) ↔ 𝐿 = ( ♯ ‘ 𝑣 ) ) ) | |
| 20 | 19 | anbi2d | ⊢ ( 𝑥 = 𝐿 → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) ) ) |
| 21 | 20 | imbi1d | ⊢ ( 𝑥 = 𝐿 → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 22 | 21 | 2albidv | ⊢ ( 𝑥 = 𝐿 → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 23 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( ♯ ‘ 𝑣 ) ↔ 𝑦 = ( ♯ ‘ 𝑣 ) ) ) | |
| 24 | 23 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) ) ) |
| 25 | 24 | imbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 26 | 25 | 2albidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 27 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 = ( ♯ ‘ 𝑣 ) ↔ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) | |
| 28 | 27 | anbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ) |
| 29 | 28 | imbi1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 30 | 29 | 2albidv | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 31 | eqeq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 = ( ♯ ‘ 𝑣 ) ↔ 𝑛 = ( ♯ ‘ 𝑣 ) ) ) | |
| 32 | 31 | anbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) ) ) |
| 33 | 32 | imbi1d | ⊢ ( 𝑥 = 𝑛 → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 34 | 33 | 2albidv | ⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑥 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 35 | eqcom | ⊢ ( 𝐿 = ( ♯ ‘ 𝑣 ) ↔ ( ♯ ‘ 𝑣 ) = 𝐿 ) | |
| 36 | 35 7 | sylan2b | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) |
| 37 | 36 | gen2 | ⊢ ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) |
| 38 | 37 | a1i | ⊢ ( 𝐿 ∈ ℤ → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝐿 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
| 39 | simpl | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → 𝑣 = 𝑤 ) | |
| 40 | simpr | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → 𝑒 = 𝑓 ) | |
| 41 | 40 | sbceq1d | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( [ 𝑒 / 𝑏 ] 𝜌 ↔ [ 𝑓 / 𝑏 ] 𝜌 ) ) |
| 42 | 39 41 | sbceqbid | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ↔ [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ) ) |
| 43 | fveq2 | ⊢ ( 𝑣 = 𝑤 → ( ♯ ‘ 𝑣 ) = ( ♯ ‘ 𝑤 ) ) | |
| 44 | 43 | eqeq2d | ⊢ ( 𝑣 = 𝑤 → ( 𝑦 = ( ♯ ‘ 𝑣 ) ↔ 𝑦 = ( ♯ ‘ 𝑤 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝑦 = ( ♯ ‘ 𝑣 ) ↔ 𝑦 = ( ♯ ‘ 𝑤 ) ) ) |
| 46 | 42 45 | anbi12d | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) ) ) |
| 47 | 46 4 | imbi12d | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ) ) |
| 48 | 47 | cbval2vw | ⊢ ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ) |
| 49 | nn0ge0 | ⊢ ( 𝐿 ∈ ℕ0 → 0 ≤ 𝐿 ) | |
| 50 | 0red | ⊢ ( 𝑦 ∈ ℤ → 0 ∈ ℝ ) | |
| 51 | nn0re | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) | |
| 52 | 2 51 | mp1i | ⊢ ( 𝑦 ∈ ℤ → 𝐿 ∈ ℝ ) |
| 53 | zre | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) | |
| 54 | letr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 0 ≤ 𝐿 ∧ 𝐿 ≤ 𝑦 ) → 0 ≤ 𝑦 ) ) | |
| 55 | 50 52 53 54 | syl3anc | ⊢ ( 𝑦 ∈ ℤ → ( ( 0 ≤ 𝐿 ∧ 𝐿 ≤ 𝑦 ) → 0 ≤ 𝑦 ) ) |
| 56 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 57 | pm3.22 | ⊢ ( ( 0 ≤ 𝑦 ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) | |
| 58 | 0z | ⊢ 0 ∈ ℤ | |
| 59 | eluz1 | ⊢ ( 0 ∈ ℤ → ( 𝑦 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) ) | |
| 60 | 58 59 | mp1i | ⊢ ( ( 0 ≤ 𝑦 ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) ) |
| 61 | 57 60 | mpbird | ⊢ ( ( 0 ≤ 𝑦 ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ( ℤ≥ ‘ 0 ) ) |
| 62 | eluznn0 | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝑦 ∈ ( ℤ≥ ‘ 0 ) ) → 𝑦 ∈ ℕ0 ) | |
| 63 | 56 61 62 | sylancr | ⊢ ( ( 0 ≤ 𝑦 ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℕ0 ) |
| 64 | 63 | ex | ⊢ ( 0 ≤ 𝑦 → ( 𝑦 ∈ ℤ → 𝑦 ∈ ℕ0 ) ) |
| 65 | 55 64 | syl6com | ⊢ ( ( 0 ≤ 𝐿 ∧ 𝐿 ≤ 𝑦 ) → ( 𝑦 ∈ ℤ → ( 𝑦 ∈ ℤ → 𝑦 ∈ ℕ0 ) ) ) |
| 66 | 65 | ex | ⊢ ( 0 ≤ 𝐿 → ( 𝐿 ≤ 𝑦 → ( 𝑦 ∈ ℤ → ( 𝑦 ∈ ℤ → 𝑦 ∈ ℕ0 ) ) ) ) |
| 67 | 66 | com14 | ⊢ ( 𝑦 ∈ ℤ → ( 𝐿 ≤ 𝑦 → ( 𝑦 ∈ ℤ → ( 0 ≤ 𝐿 → 𝑦 ∈ ℕ0 ) ) ) ) |
| 68 | 67 | pm2.43a | ⊢ ( 𝑦 ∈ ℤ → ( 𝐿 ≤ 𝑦 → ( 0 ≤ 𝐿 → 𝑦 ∈ ℕ0 ) ) ) |
| 69 | 68 | imp | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → ( 0 ≤ 𝐿 → 𝑦 ∈ ℕ0 ) ) |
| 70 | 69 | com12 | ⊢ ( 0 ≤ 𝐿 → ( ( 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → 𝑦 ∈ ℕ0 ) ) |
| 71 | 2 49 70 | mp2b | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → 𝑦 ∈ ℕ0 ) |
| 72 | 71 | 3adant1 | ⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → 𝑦 ∈ ℕ0 ) |
| 73 | eqcom | ⊢ ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ↔ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) | |
| 74 | nn0p1gt0 | ⊢ ( 𝑦 ∈ ℕ0 → 0 < ( 𝑦 + 1 ) ) | |
| 75 | 74 | adantr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 0 < ( 𝑦 + 1 ) ) |
| 76 | simpr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) | |
| 77 | 75 76 | breqtrrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 78 | 73 77 | sylan2b | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 79 | 78 | adantrl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 80 | hashgt0elex | ⊢ ( ( 𝑣 ∈ V ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ∃ 𝑛 𝑛 ∈ 𝑣 ) | |
| 81 | vex | ⊢ 𝑣 ∈ V | |
| 82 | 81 | a1i | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑣 ∈ V ) |
| 83 | simpr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑛 ∈ 𝑣 ) | |
| 84 | simpl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑦 ∈ ℕ0 ) | |
| 85 | hashdifsnp1 | ⊢ ( ( 𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) | |
| 86 | 73 85 | biimtrid | ⊢ ( ( 𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 87 | 82 83 84 86 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 88 | 87 | imp | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) |
| 89 | peano2nn0 | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) | |
| 90 | 89 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 91 | 90 | ad2antlr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 92 | simpr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) | |
| 93 | simplrr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) | |
| 94 | simprlr | ⊢ ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → 𝑛 ∈ 𝑣 ) | |
| 95 | 94 | adantr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → 𝑛 ∈ 𝑣 ) |
| 96 | 92 93 95 | 3jca | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ) |
| 97 | 91 96 | jca | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
| 98 | 81 | difexi | ⊢ ( 𝑣 ∖ { 𝑛 } ) ∈ V |
| 99 | simpl | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ) | |
| 100 | simpr | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) | |
| 101 | 100 | sbceq1d | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( [ 𝑓 / 𝑏 ] 𝜌 ↔ [ 𝐹 / 𝑏 ] 𝜌 ) ) |
| 102 | 99 101 | sbceqbid | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ↔ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ) |
| 103 | eqcom | ⊢ ( 𝑦 = ( ♯ ‘ 𝑤 ) ↔ ( ♯ ‘ 𝑤 ) = 𝑦 ) | |
| 104 | fveqeq2 | ⊢ ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) → ( ( ♯ ‘ 𝑤 ) = 𝑦 ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) | |
| 105 | 103 104 | bitrid | ⊢ ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) → ( 𝑦 = ( ♯ ‘ 𝑤 ) ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 106 | 105 | adantr | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝑦 = ( ♯ ‘ 𝑤 ) ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 107 | 102 106 | anbi12d | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) ↔ ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) ) |
| 108 | 107 6 | imbi12d | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ↔ ( ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) ) |
| 109 | 108 | spc2gv | ⊢ ( ( ( 𝑣 ∖ { 𝑛 } ) ∈ V ∧ 𝐹 ∈ V ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → ( ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) ) |
| 110 | 98 1 109 | mp2an | ⊢ ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → ( ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) |
| 111 | 110 | expdimp | ⊢ ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜒 ) ) |
| 112 | 111 | ad2antrr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜒 ) ) |
| 113 | 73 | 3anbi2i | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ↔ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) |
| 114 | 113 | anbi2i | ⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ) ↔ ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
| 115 | 114 8 | sylanb | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
| 116 | 97 112 115 | syl6an | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ∧ [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) ∧ [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜓 ) ) |
| 117 | 116 | exp41 | ⊢ ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜓 ) ) ) ) ) |
| 118 | 117 | com15 | ⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 119 | 118 | com23 | ⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 120 | 88 119 | mpcom | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 121 | 120 | ex | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 122 | 121 | com23 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 123 | 122 | ex | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑛 ∈ 𝑣 → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 124 | 123 | com15 | ⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( 𝑛 ∈ 𝑣 → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 125 | 124 | imp | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 ∈ 𝑣 ) → ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 126 | 5 125 | mpd | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 127 | 126 | ex | ⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( 𝑛 ∈ 𝑣 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 128 | 127 | com4l | ⊢ ( 𝑛 ∈ 𝑣 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 129 | 128 | exlimiv | ⊢ ( ∃ 𝑛 𝑛 ∈ 𝑣 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 130 | 80 129 | syl | ⊢ ( ( 𝑣 ∈ V ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 131 | 130 | ex | ⊢ ( 𝑣 ∈ V → ( 0 < ( ♯ ‘ 𝑣 ) → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 132 | 131 | com25 | ⊢ ( 𝑣 ∈ V → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 133 | 132 | elv | ⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 → ( ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 134 | 133 | imp | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 135 | 134 | impcom | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) ) |
| 136 | 79 135 | mpd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) |
| 137 | 72 136 | sylan | ⊢ ( ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → 𝜓 ) ) |
| 138 | 137 | impancom | ⊢ ( ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) ∧ ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ) → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
| 139 | 138 | alrimivv | ⊢ ( ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) ∧ ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
| 140 | 139 | ex | ⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( [ 𝑤 / 𝑎 ] [ 𝑓 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑤 ) ) → 𝜃 ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 141 | 48 140 | biimtrid | ⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑦 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ ( 𝑦 + 1 ) = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) ) |
| 142 | 22 26 30 34 38 141 | uzind | ⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐿 ≤ 𝑛 ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
| 143 | 11 13 18 142 | syl3anc | ⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ) |
| 144 | sbcex | ⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → 𝑉 ∈ V ) | |
| 145 | sbccom | ⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ↔ [ 𝐸 / 𝑏 ] [ 𝑉 / 𝑎 ] 𝜌 ) | |
| 146 | sbcex | ⊢ ( [ 𝐸 / 𝑏 ] [ 𝑉 / 𝑎 ] 𝜌 → 𝐸 ∈ V ) | |
| 147 | 145 146 | sylbi | ⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → 𝐸 ∈ V ) |
| 148 | 144 147 | jca | ⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
| 149 | simpl | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝑣 = 𝑉 ) | |
| 150 | simpr | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝑒 = 𝐸 ) | |
| 151 | 150 | sbceq1d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( [ 𝑒 / 𝑏 ] 𝜌 ↔ [ 𝐸 / 𝑏 ] 𝜌 ) ) |
| 152 | 149 151 | sbceqbid | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ↔ [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ) ) |
| 153 | fveq2 | ⊢ ( 𝑣 = 𝑉 → ( ♯ ‘ 𝑣 ) = ( ♯ ‘ 𝑉 ) ) | |
| 154 | 153 | eqeq2d | ⊢ ( 𝑣 = 𝑉 → ( 𝑛 = ( ♯ ‘ 𝑣 ) ↔ 𝑛 = ( ♯ ‘ 𝑉 ) ) ) |
| 155 | 154 | adantr | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑛 = ( ♯ ‘ 𝑣 ) ↔ 𝑛 = ( ♯ ‘ 𝑉 ) ) ) |
| 156 | 152 155 | anbi12d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) ↔ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) ) ) |
| 157 | 156 3 | imbi12d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) ↔ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝜑 ) ) ) |
| 158 | 157 | spc2gv | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝜑 ) ) ) |
| 159 | 158 | com23 | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → 𝜑 ) ) ) |
| 160 | 159 | expd | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → 𝜑 ) ) ) ) |
| 161 | 148 160 | mpcom | ⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → 𝜑 ) ) ) |
| 162 | 161 | imp | ⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ( ∀ 𝑣 ∀ 𝑒 ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑣 ) ) → 𝜓 ) → 𝜑 ) ) |
| 163 | 143 162 | syl5com | ⊢ ( ( ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝜑 ) ) |
| 164 | 163 | exp31 | ⊢ ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → ( 𝑛 ∈ ℕ0 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → 𝜑 ) ) ) ) |
| 165 | 164 | com14 | ⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑛 = ( ♯ ‘ 𝑉 ) ) → ( 𝑛 ∈ ℕ0 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) ) |
| 166 | 165 | expcom | ⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑛 ∈ ℕ0 → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) ) ) |
| 167 | 166 | com24 | ⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝑛 ∈ ℕ0 → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) ) ) |
| 168 | 167 | pm2.43i | ⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝑛 ∈ ℕ0 → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) ) |
| 169 | 168 | imp | ⊢ ( ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) |
| 170 | 169 | exlimiv | ⊢ ( ∃ 𝑛 ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) |
| 171 | 9 170 | sylbi | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) |
| 172 | hashcl | ⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) | |
| 173 | 171 172 | syl11 | ⊢ ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 → ( 𝑉 ∈ Fin → ( 𝐿 ≤ ( ♯ ‘ 𝑉 ) → 𝜑 ) ) ) |
| 174 | 173 | 3imp | ⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝜌 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |