This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper integers that start at M . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind.1 | ⊢ ( 𝑗 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| uzind.2 | ⊢ ( 𝑗 = 𝑘 → ( 𝜑 ↔ 𝜒 ) ) | ||
| uzind.3 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| uzind.4 | ⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) | ||
| uzind.5 | ⊢ ( 𝑀 ∈ ℤ → 𝜓 ) | ||
| uzind.6 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | uzind | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind.1 | ⊢ ( 𝑗 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | uzind.2 | ⊢ ( 𝑗 = 𝑘 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | uzind.3 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | uzind.4 | ⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | uzind.5 | ⊢ ( 𝑀 ∈ ℤ → 𝜓 ) | |
| 6 | uzind.6 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 8 | 7 | leidd | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ≤ 𝑀 ) |
| 9 | 8 5 | jca | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑀 ∧ 𝜓 ) ) |
| 10 | 9 | ancli | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑀 ∧ 𝜓 ) ) ) |
| 11 | breq2 | ⊢ ( 𝑗 = 𝑀 → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝑀 ) ) | |
| 12 | 11 1 | anbi12d | ⊢ ( 𝑗 = 𝑀 → ( ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) ↔ ( 𝑀 ≤ 𝑀 ∧ 𝜓 ) ) ) |
| 13 | 12 | elrab | ⊢ ( 𝑀 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑀 ∧ 𝜓 ) ) ) |
| 14 | 10 13 | sylibr | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ) |
| 15 | peano2z | ⊢ ( 𝑘 ∈ ℤ → ( 𝑘 + 1 ) ∈ ℤ ) | |
| 16 | 15 | a1i | ⊢ ( 𝑀 ∈ ℤ → ( 𝑘 ∈ ℤ → ( 𝑘 + 1 ) ∈ ℤ ) ) |
| 17 | 16 | adantrd | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑘 ∈ ℤ ∧ ( 𝑀 ≤ 𝑘 ∧ 𝜒 ) ) → ( 𝑘 + 1 ) ∈ ℤ ) ) |
| 18 | zre | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) | |
| 19 | ltp1 | ⊢ ( 𝑘 ∈ ℝ → 𝑘 < ( 𝑘 + 1 ) ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → 𝑘 < ( 𝑘 + 1 ) ) |
| 21 | peano2re | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) | |
| 22 | 21 | ancli | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) ) |
| 23 | lelttr | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( ( 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝑘 + 1 ) ) → 𝑀 < ( 𝑘 + 1 ) ) ) | |
| 24 | 23 | 3expb | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) ) → ( ( 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝑘 + 1 ) ) → 𝑀 < ( 𝑘 + 1 ) ) ) |
| 25 | 22 24 | sylan2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝑘 + 1 ) ) → 𝑀 < ( 𝑘 + 1 ) ) ) |
| 26 | 20 25 | mpan2d | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑀 ≤ 𝑘 → 𝑀 < ( 𝑘 + 1 ) ) ) |
| 27 | ltle | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑀 < ( 𝑘 + 1 ) → 𝑀 ≤ ( 𝑘 + 1 ) ) ) | |
| 28 | 21 27 | sylan2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑀 < ( 𝑘 + 1 ) → 𝑀 ≤ ( 𝑘 + 1 ) ) ) |
| 29 | 26 28 | syld | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑀 ≤ 𝑘 → 𝑀 ≤ ( 𝑘 + 1 ) ) ) |
| 30 | 7 18 29 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑀 ≤ 𝑘 → 𝑀 ≤ ( 𝑘 + 1 ) ) ) |
| 31 | 30 | adantrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑘 ∧ 𝜒 ) → 𝑀 ≤ ( 𝑘 + 1 ) ) ) |
| 32 | 31 | expimpd | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑘 ∈ ℤ ∧ ( 𝑀 ≤ 𝑘 ∧ 𝜒 ) ) → 𝑀 ≤ ( 𝑘 + 1 ) ) ) |
| 33 | 6 | 3exp | ⊢ ( 𝑀 ∈ ℤ → ( 𝑘 ∈ ℤ → ( 𝑀 ≤ 𝑘 → ( 𝜒 → 𝜃 ) ) ) ) |
| 34 | 33 | imp4d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑘 ∈ ℤ ∧ ( 𝑀 ≤ 𝑘 ∧ 𝜒 ) ) → 𝜃 ) ) |
| 35 | 32 34 | jcad | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑘 ∈ ℤ ∧ ( 𝑀 ≤ 𝑘 ∧ 𝜒 ) ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ∧ 𝜃 ) ) ) |
| 36 | 17 35 | jcad | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑘 ∈ ℤ ∧ ( 𝑀 ≤ 𝑘 ∧ 𝜒 ) ) → ( ( 𝑘 + 1 ) ∈ ℤ ∧ ( 𝑀 ≤ ( 𝑘 + 1 ) ∧ 𝜃 ) ) ) ) |
| 37 | breq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝑘 ) ) | |
| 38 | 37 2 | anbi12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) ↔ ( 𝑀 ≤ 𝑘 ∧ 𝜒 ) ) ) |
| 39 | 38 | elrab | ⊢ ( 𝑘 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ↔ ( 𝑘 ∈ ℤ ∧ ( 𝑀 ≤ 𝑘 ∧ 𝜒 ) ) ) |
| 40 | breq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ ( 𝑘 + 1 ) ) ) | |
| 41 | 40 3 | anbi12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) ↔ ( 𝑀 ≤ ( 𝑘 + 1 ) ∧ 𝜃 ) ) ) |
| 42 | 41 | elrab | ⊢ ( ( 𝑘 + 1 ) ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ↔ ( ( 𝑘 + 1 ) ∈ ℤ ∧ ( 𝑀 ≤ ( 𝑘 + 1 ) ∧ 𝜃 ) ) ) |
| 43 | 36 39 42 | 3imtr4g | ⊢ ( 𝑀 ∈ ℤ → ( 𝑘 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } → ( 𝑘 + 1 ) ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ) ) |
| 44 | 43 | ralrimiv | ⊢ ( 𝑀 ∈ ℤ → ∀ 𝑘 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ( 𝑘 + 1 ) ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ) |
| 45 | peano5uzti | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ∧ ∀ 𝑘 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ( 𝑘 + 1 ) ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ) → { 𝑤 ∈ ℤ ∣ 𝑀 ≤ 𝑤 } ⊆ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ) ) | |
| 46 | 14 44 45 | mp2and | ⊢ ( 𝑀 ∈ ℤ → { 𝑤 ∈ ℤ ∣ 𝑀 ≤ 𝑤 } ⊆ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ) |
| 47 | 46 | sseld | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ { 𝑤 ∈ ℤ ∣ 𝑀 ≤ 𝑤 } → 𝑁 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ) ) |
| 48 | breq2 | ⊢ ( 𝑤 = 𝑁 → ( 𝑀 ≤ 𝑤 ↔ 𝑀 ≤ 𝑁 ) ) | |
| 49 | 48 | elrab | ⊢ ( 𝑁 ∈ { 𝑤 ∈ ℤ ∣ 𝑀 ≤ 𝑤 } ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
| 50 | breq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝑁 ) ) | |
| 51 | 50 4 | anbi12d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) ↔ ( 𝑀 ≤ 𝑁 ∧ 𝜏 ) ) ) |
| 52 | 51 | elrab | ⊢ ( 𝑁 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝜑 ) } ↔ ( 𝑁 ∈ ℤ ∧ ( 𝑀 ≤ 𝑁 ∧ 𝜏 ) ) ) |
| 53 | 47 49 52 | 3imtr3g | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 ∈ ℤ ∧ ( 𝑀 ≤ 𝑁 ∧ 𝜏 ) ) ) ) |
| 54 | 53 | 3impib | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 ∈ ℤ ∧ ( 𝑀 ≤ 𝑁 ∧ 𝜏 ) ) ) |
| 55 | 54 | simprrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝜏 ) |