This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgt0elex | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 0 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑥 𝑥 ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑉 ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) | |
| 2 | eq0 | ⊢ ( 𝑉 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝑉 ) | |
| 3 | 2 | biimpri | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑉 → 𝑉 = ∅ ) |
| 4 | 3 | a1d | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑉 → ( 𝑉 ∈ 𝑊 → 𝑉 = ∅ ) ) |
| 5 | 1 4 | sylbir | ⊢ ( ¬ ∃ 𝑥 𝑥 ∈ 𝑉 → ( 𝑉 ∈ 𝑊 → 𝑉 = ∅ ) ) |
| 6 | 5 | impcom | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → 𝑉 = ∅ ) |
| 7 | hashle00 | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ 𝑉 = ∅ ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ 𝑉 = ∅ ) ) |
| 9 | 6 8 | mpbird | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → ( ♯ ‘ 𝑉 ) ≤ 0 ) |
| 10 | hashxrcl | ⊢ ( 𝑉 ∈ 𝑊 → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) | |
| 11 | 0xr | ⊢ 0 ∈ ℝ* | |
| 12 | xrlenlt | ⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ ¬ 0 < ( ♯ ‘ 𝑉 ) ) ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ ¬ 0 < ( ♯ ‘ 𝑉 ) ) ) |
| 14 | 13 | bicomd | ⊢ ( 𝑉 ∈ 𝑊 → ( ¬ 0 < ( ♯ ‘ 𝑉 ) ↔ ( ♯ ‘ 𝑉 ) ≤ 0 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → ( ¬ 0 < ( ♯ ‘ 𝑉 ) ↔ ( ♯ ‘ 𝑉 ) ≤ 0 ) ) |
| 16 | 9 15 | mpbird | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → ¬ 0 < ( ♯ ‘ 𝑉 ) ) |
| 17 | 16 | ex | ⊢ ( 𝑉 ∈ 𝑊 → ( ¬ ∃ 𝑥 𝑥 ∈ 𝑉 → ¬ 0 < ( ♯ ‘ 𝑉 ) ) ) |
| 18 | 17 | con4d | ⊢ ( 𝑉 ∈ 𝑊 → ( 0 < ( ♯ ‘ 𝑉 ) → ∃ 𝑥 𝑥 ∈ 𝑉 ) ) |
| 19 | 18 | imp | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 0 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑥 𝑥 ∈ 𝑉 ) |