This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } → 𝐴 ∈ V ) | |
| 3 | 1 2 | sylbi | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |