This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdifsnp1 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | ⊢ ( 𝑌 ∈ ℕ0 → ( 𝑌 + 1 ) ∈ ℕ0 ) | |
| 2 | eleq1a | ⊢ ( ( 𝑌 + 1 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) |
| 4 | 3 | imp | ⊢ ( ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
| 5 | hashclb | ⊢ ( 𝑉 ∈ 𝑊 → ( 𝑉 ∈ Fin ↔ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( 𝑉 ∈ Fin ↔ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → 𝑉 ∈ Fin ) |
| 8 | 7 | ex | ⊢ ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) |
| 9 | 8 | ex | ⊢ ( ( 𝑌 + 1 ) ∈ ℕ0 → ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) ) |
| 10 | 1 9 | syl | ⊢ ( 𝑌 ∈ ℕ0 → ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) ) |
| 11 | 10 | impcom | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) |
| 13 | 12 | imp | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → 𝑉 ∈ Fin ) |
| 14 | snssi | ⊢ ( 𝑁 ∈ 𝑉 → { 𝑁 } ⊆ 𝑉 ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → { 𝑁 } ⊆ 𝑉 ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → { 𝑁 } ⊆ 𝑉 ) |
| 17 | hashssdif | ⊢ ( ( 𝑉 ∈ Fin ∧ { 𝑁 } ⊆ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) ) | |
| 18 | 13 16 17 | syl2anc | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) ) |
| 19 | oveq1 | ⊢ ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) = ( ( 𝑌 + 1 ) − ( ♯ ‘ { 𝑁 } ) ) ) | |
| 20 | hashsng | ⊢ ( 𝑁 ∈ 𝑉 → ( ♯ ‘ { 𝑁 } ) = 1 ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑌 + 1 ) − ( ♯ ‘ { 𝑁 } ) ) = ( ( 𝑌 + 1 ) − 1 ) ) |
| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( 𝑌 + 1 ) − ( ♯ ‘ { 𝑁 } ) ) = ( ( 𝑌 + 1 ) − 1 ) ) |
| 23 | nn0cn | ⊢ ( 𝑌 ∈ ℕ0 → 𝑌 ∈ ℂ ) | |
| 24 | 1cnd | ⊢ ( 𝑌 ∈ ℕ0 → 1 ∈ ℂ ) | |
| 25 | 23 24 | pncand | ⊢ ( 𝑌 ∈ ℕ0 → ( ( 𝑌 + 1 ) − 1 ) = 𝑌 ) |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( 𝑌 + 1 ) − 1 ) = 𝑌 ) |
| 27 | 22 26 | eqtrd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( 𝑌 + 1 ) − ( ♯ ‘ { 𝑁 } ) ) = 𝑌 ) |
| 28 | 19 27 | sylan9eqr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) = 𝑌 ) |
| 29 | 18 28 | eqtrd | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = 𝑌 ) |
| 30 | 29 | ex | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = 𝑌 ) ) |