This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005) (Proof shortened by Mario Carneiro, 18-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbccom | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbccomlem | ⊢ ( [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑤 ] [ 𝐴 / 𝑧 ] [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 2 | sbccomlem | ⊢ ( [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 3 | 2 | sbcbii | ⊢ ( [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑤 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 4 | sbccomlem | ⊢ ( [ 𝐵 / 𝑤 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 5 | 3 4 | bitri | ⊢ ( [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 6 | 5 | sbcbii | ⊢ ( [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 7 | sbccomlem | ⊢ ( [ 𝐴 / 𝑧 ] [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 8 | 7 | sbcbii | ⊢ ( [ 𝐵 / 𝑤 ] [ 𝐴 / 𝑧 ] [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ) |
| 9 | 1 6 8 | 3bitr3i | ⊢ ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ) |
| 10 | sbccow | ⊢ ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 11 | sbccow | ⊢ ( [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 12 | 9 10 11 | 3bitr3i | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ) |
| 13 | sbccow | ⊢ ( [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] 𝜑 ) | |
| 14 | 13 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ) |
| 15 | sbccow | ⊢ ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) | |
| 16 | 15 | sbcbii | ⊢ ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| 17 | 12 14 16 | 3bitr3i | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |