This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsrest | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) = ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) | |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) |
| 4 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 6 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 8 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ∈ 𝐹 ) | |
| 9 | fbncp | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) |
| 11 | simp2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 12 | trfil3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) | |
| 13 | 11 3 12 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) |
| 14 | 10 13 | mpbird | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) |
| 15 | fclsopn | ⊢ ( ( ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) ) ) | |
| 16 | 5 14 15 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) ) ) |
| 17 | in32 | ⊢ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) = ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑠 ) | |
| 18 | ineq2 | ⊢ ( 𝑠 = 𝑡 → ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑠 ) = ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ) | |
| 19 | 17 18 | eqtrid | ⊢ ( 𝑠 = 𝑡 → ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) = ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ) |
| 20 | 19 | neeq1d | ⊢ ( 𝑠 = 𝑡 → ( ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ↔ ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ≠ ∅ ) ) |
| 21 | 20 | rspccv | ⊢ ( ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ → ( 𝑡 ∈ 𝐹 → ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ≠ ∅ ) ) |
| 22 | inss1 | ⊢ ( 𝑢 ∩ 𝑌 ) ⊆ 𝑢 | |
| 23 | ssrin | ⊢ ( ( 𝑢 ∩ 𝑌 ) ⊆ 𝑢 → ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ⊆ ( 𝑢 ∩ 𝑡 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ⊆ ( 𝑢 ∩ 𝑡 ) |
| 25 | ssn0 | ⊢ ( ( ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ⊆ ( 𝑢 ∩ 𝑡 ) ∧ ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ≠ ∅ ) → ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) | |
| 26 | 24 25 | mpan | ⊢ ( ( ( 𝑢 ∩ 𝑌 ) ∩ 𝑡 ) ≠ ∅ → ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) |
| 27 | 21 26 | syl6 | ⊢ ( ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ → ( 𝑡 ∈ 𝐹 → ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) |
| 28 | 27 | ralrimiv | ⊢ ( ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) |
| 29 | 11 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 30 | simpr | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ∈ 𝐹 ) | |
| 31 | 8 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑌 ∈ 𝐹 ) |
| 32 | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ 𝐹 ) | |
| 33 | 29 30 31 32 | syl3anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ 𝐹 ) |
| 34 | ineq2 | ⊢ ( 𝑡 = ( 𝑠 ∩ 𝑌 ) → ( 𝑢 ∩ 𝑡 ) = ( 𝑢 ∩ ( 𝑠 ∩ 𝑌 ) ) ) | |
| 35 | inass | ⊢ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) = ( 𝑢 ∩ ( 𝑠 ∩ 𝑌 ) ) | |
| 36 | 34 35 | eqtr4di | ⊢ ( 𝑡 = ( 𝑠 ∩ 𝑌 ) → ( 𝑢 ∩ 𝑡 ) = ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ) |
| 37 | 36 | neeq1d | ⊢ ( 𝑡 = ( 𝑠 ∩ 𝑌 ) → ( ( 𝑢 ∩ 𝑡 ) ≠ ∅ ↔ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
| 38 | 37 | rspcv | ⊢ ( ( 𝑠 ∩ 𝑌 ) ∈ 𝐹 → ( ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ → ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
| 39 | 33 38 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝐹 ) → ( ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ → ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
| 40 | 39 | ralrimdva | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
| 41 | 28 40 | impbid2 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ↔ ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) |
| 42 | 41 | imbi2d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑢 → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ↔ ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) |
| 43 | 42 | ralbidva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) |
| 44 | vex | ⊢ 𝑢 ∈ V | |
| 45 | 44 | inex1 | ⊢ ( 𝑢 ∩ 𝑌 ) ∈ V |
| 46 | 45 | a1i | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑢 ∩ 𝑌 ) ∈ V ) |
| 47 | elrest | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑦 = ( 𝑢 ∩ 𝑌 ) ) ) | |
| 48 | 47 | 3adant2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑦 = ( 𝑢 ∩ 𝑌 ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑦 = ( 𝑢 ∩ 𝑌 ) ) ) |
| 50 | eleq2 | ⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑢 ∩ 𝑌 ) ) ) | |
| 51 | elin | ⊢ ( 𝑥 ∈ ( 𝑢 ∩ 𝑌 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑌 ) ) | |
| 52 | 51 | rbaib | ⊢ ( 𝑥 ∈ 𝑌 → ( 𝑥 ∈ ( 𝑢 ∩ 𝑌 ) ↔ 𝑥 ∈ 𝑢 ) ) |
| 53 | 52 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ ( 𝑢 ∩ 𝑌 ) ↔ 𝑥 ∈ 𝑢 ) ) |
| 54 | 50 53 | sylan9bbr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑢 ∩ 𝑌 ) ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑢 ) ) |
| 55 | vex | ⊢ 𝑠 ∈ V | |
| 56 | 55 | inex1 | ⊢ ( 𝑠 ∩ 𝑌 ) ∈ V |
| 57 | 56 | a1i | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ V ) |
| 58 | elrest | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑧 = ( 𝑠 ∩ 𝑌 ) ) ) | |
| 59 | 58 | 3adant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑧 = ( 𝑠 ∩ 𝑌 ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑧 = ( 𝑠 ∩ 𝑌 ) ) ) |
| 61 | ineq2 | ⊢ ( 𝑧 = ( 𝑠 ∩ 𝑌 ) → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ) | |
| 62 | 61 | adantl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 = ( 𝑠 ∩ 𝑌 ) ) → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ) |
| 63 | 62 | neeq1d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 = ( 𝑠 ∩ 𝑌 ) ) → ( ( 𝑦 ∩ 𝑧 ) ≠ ∅ ↔ ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ≠ ∅ ) ) |
| 64 | 57 60 63 | ralxfr2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐹 ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ≠ ∅ ) ) |
| 65 | ineq1 | ⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) = ( ( 𝑢 ∩ 𝑌 ) ∩ ( 𝑠 ∩ 𝑌 ) ) ) | |
| 66 | inindir | ⊢ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) = ( ( 𝑢 ∩ 𝑌 ) ∩ ( 𝑠 ∩ 𝑌 ) ) | |
| 67 | 65 66 | eqtr4di | ⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) = ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ) |
| 68 | 67 | neeq1d | ⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ≠ ∅ ↔ ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
| 69 | 68 | ralbidv | ⊢ ( 𝑦 = ( 𝑢 ∩ 𝑌 ) → ( ∀ 𝑠 ∈ 𝐹 ( 𝑦 ∩ ( 𝑠 ∩ 𝑌 ) ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
| 70 | 64 69 | sylan9bb | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑢 ∩ 𝑌 ) ) → ( ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) |
| 71 | 54 70 | imbi12d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑢 ∩ 𝑌 ) ) → ( ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ↔ ( 𝑥 ∈ 𝑢 → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) ) |
| 72 | 46 49 71 | ralxfr2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑠 ∈ 𝐹 ( ( 𝑢 ∩ 𝑠 ) ∩ 𝑌 ) ≠ ∅ ) ) ) |
| 73 | 1 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 74 | 11 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 75 | 3 | sselda | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 76 | fclsopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) ) | |
| 77 | 76 | baibd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) |
| 78 | 73 74 75 77 | syl21anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∀ 𝑡 ∈ 𝐹 ( 𝑢 ∩ 𝑡 ) ≠ ∅ ) ) ) |
| 79 | 43 72 78 | 3bitr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ↔ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 80 | 79 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → ∀ 𝑧 ∈ ( 𝐹 ↾t 𝑌 ) ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 81 | 16 80 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 82 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ) | |
| 83 | 82 | biancomi | ⊢ ( 𝑥 ∈ ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 84 | 81 83 | bitr4di | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) ↔ 𝑥 ∈ ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ) ) |
| 85 | 84 | eqrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐽 ↾t 𝑌 ) fClus ( 𝐹 ↾t 𝑌 ) ) = ( ( 𝐽 fClus 𝐹 ) ∩ 𝑌 ) ) |