This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbncp | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ¬ ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelfb | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ¬ ∅ ∈ 𝐹 ) |
| 3 | fbasssin | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 4 | disjdif | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ | |
| 5 | 4 | sseq2i | ⊢ ( 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ⊆ ∅ ) |
| 6 | ss0 | ⊢ ( 𝑥 ⊆ ∅ → 𝑥 = ∅ ) | |
| 7 | 5 6 | sylbi | ⊢ ( 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) → 𝑥 = ∅ ) |
| 8 | eleq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) | |
| 9 | 8 | biimpac | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 = ∅ ) → ∅ ∈ 𝐹 ) |
| 10 | 7 9 | sylan2 | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ) → ∅ ∈ 𝐹 ) |
| 11 | 10 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) → ∅ ∈ 𝐹 ) |
| 12 | 3 11 | syl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 ) → ∅ ∈ 𝐹 ) |
| 13 | 12 | 3expia | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 → ∅ ∈ 𝐹 ) ) |
| 14 | 2 13 | mtod | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ¬ ( 𝐵 ∖ 𝐴 ) ∈ 𝐹 ) |