This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for the trace of a filter L to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trfil3 | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐿 ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ¬ ( 𝑌 ∖ 𝐴 ) ∈ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trfil2 | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐿 ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ∀ 𝑣 ∈ 𝐿 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) | |
| 2 | dfral2 | ⊢ ( ∀ 𝑣 ∈ 𝐿 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ¬ ∃ 𝑣 ∈ 𝐿 ¬ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) | |
| 3 | nne | ⊢ ( ¬ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ( 𝑣 ∩ 𝐴 ) = ∅ ) | |
| 4 | filelss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝑣 ∈ 𝐿 ) → 𝑣 ⊆ 𝑌 ) | |
| 5 | reldisj | ⊢ ( 𝑣 ⊆ 𝑌 → ( ( 𝑣 ∩ 𝐴 ) = ∅ ↔ 𝑣 ⊆ ( 𝑌 ∖ 𝐴 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝑣 ∈ 𝐿 ) → ( ( 𝑣 ∩ 𝐴 ) = ∅ ↔ 𝑣 ⊆ ( 𝑌 ∖ 𝐴 ) ) ) |
| 7 | 3 6 | bitrid | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝑣 ∈ 𝐿 ) → ( ¬ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ 𝑣 ⊆ ( 𝑌 ∖ 𝐴 ) ) ) |
| 8 | 7 | rexbidva | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → ( ∃ 𝑣 ∈ 𝐿 ¬ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ∃ 𝑣 ∈ 𝐿 𝑣 ⊆ ( 𝑌 ∖ 𝐴 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∃ 𝑣 ∈ 𝐿 ¬ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ∃ 𝑣 ∈ 𝐿 𝑣 ⊆ ( 𝑌 ∖ 𝐴 ) ) ) |
| 10 | difssd | ⊢ ( 𝐴 ⊆ 𝑌 → ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ) | |
| 11 | elfilss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ 𝐿 ↔ ∃ 𝑣 ∈ 𝐿 𝑣 ⊆ ( 𝑌 ∖ 𝐴 ) ) ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ 𝐿 ↔ ∃ 𝑣 ∈ 𝐿 𝑣 ⊆ ( 𝑌 ∖ 𝐴 ) ) ) |
| 13 | 9 12 | bitr4d | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∃ 𝑣 ∈ 𝐿 ¬ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ( 𝑌 ∖ 𝐴 ) ∈ 𝐿 ) ) |
| 14 | 13 | notbid | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ¬ ∃ 𝑣 ∈ 𝐿 ¬ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ¬ ( 𝑌 ∖ 𝐴 ) ∈ 𝐿 ) ) |
| 15 | 2 14 | bitrid | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∀ 𝑣 ∈ 𝐿 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ¬ ( 𝑌 ∖ 𝐴 ) ∈ 𝐿 ) ) |
| 16 | 1 15 | bitrd | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐿 ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ¬ ( 𝑌 ∖ 𝐴 ) ∈ 𝐿 ) ) |