This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfcls2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | |
| 2 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ≠ ∅ ) |
| 4 | r19.2z | ⊢ ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) | |
| 5 | 4 | ex | ⊢ ( 𝐹 ≠ ∅ → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 7 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑠 ∈ 𝐹 ) → 𝐽 ∈ Top ) |
| 9 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ⊆ 𝑋 ) | |
| 10 | 9 | adantll | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ⊆ 𝑋 ) |
| 11 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑠 ∈ 𝐹 ) → 𝑋 = ∪ 𝐽 ) |
| 13 | 10 12 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ⊆ ∪ 𝐽 ) |
| 14 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 15 | 14 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑠 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ⊆ ∪ 𝐽 ) |
| 16 | 8 13 15 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑠 ∈ 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ⊆ ∪ 𝐽 ) |
| 17 | 16 12 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑠 ∈ 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ⊆ 𝑋 ) |
| 18 | 17 | sseld | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ 𝑋 ) ) |
| 19 | 18 | rexlimdva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ 𝑋 ) ) |
| 20 | 6 19 | syld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ 𝑋 ) ) |
| 21 | 20 | pm4.71rd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
| 22 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝐽 ∈ Top ) |
| 23 | 13 | adantlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ⊆ ∪ 𝐽 ) |
| 24 | simplr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝐴 ∈ 𝑋 ) | |
| 25 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑋 = ∪ 𝐽 ) |
| 26 | 24 25 | eleqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 27 | 14 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑠 ⊆ ∪ 𝐽 ∧ 𝐴 ∈ ∪ 𝐽 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 28 | 22 23 26 27 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 29 | 28 | ralbidva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐹 ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 30 | ralcom | ⊢ ( ∀ 𝑠 ∈ 𝐹 ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ↔ ∀ 𝑜 ∈ 𝐽 ∀ 𝑠 ∈ 𝐹 ( 𝐴 ∈ 𝑜 → ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) | |
| 31 | r19.21v | ⊢ ( ∀ 𝑠 ∈ 𝐹 ( 𝐴 ∈ 𝑜 → ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ↔ ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) | |
| 32 | 31 | ralbii | ⊢ ( ∀ 𝑜 ∈ 𝐽 ∀ 𝑠 ∈ 𝐹 ( 𝐴 ∈ 𝑜 → ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 33 | 30 32 | bitri | ⊢ ( ∀ 𝑠 ∈ 𝐹 ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 34 | 29 33 | bitrdi | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 35 | 34 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 36 | 1 21 35 | 3bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |