This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlsvvval akin to psrbagev2 . (Contributed by SN, 6-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvvvallem.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| evlsvvvallem.k | |- K = ( Base ` S ) |
||
| evlsvvvallem.m | |- M = ( mulGrp ` S ) |
||
| evlsvvvallem.w | |- .^ = ( .g ` M ) |
||
| evlsvvvallem.i | |- ( ph -> I e. V ) |
||
| evlsvvvallem.s | |- ( ph -> S e. CRing ) |
||
| evlsvvvallem.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| evlsvvvallem.b | |- ( ph -> B e. D ) |
||
| Assertion | evlsvvvallem | |- ( ph -> ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvvvallem.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 2 | evlsvvvallem.k | |- K = ( Base ` S ) |
|
| 3 | evlsvvvallem.m | |- M = ( mulGrp ` S ) |
|
| 4 | evlsvvvallem.w | |- .^ = ( .g ` M ) |
|
| 5 | evlsvvvallem.i | |- ( ph -> I e. V ) |
|
| 6 | evlsvvvallem.s | |- ( ph -> S e. CRing ) |
|
| 7 | evlsvvvallem.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 8 | evlsvvvallem.b | |- ( ph -> B e. D ) |
|
| 9 | 3 2 | mgpbas | |- K = ( Base ` M ) |
| 10 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 11 | 3 10 | ringidval | |- ( 1r ` S ) = ( 0g ` M ) |
| 12 | 3 | crngmgp | |- ( S e. CRing -> M e. CMnd ) |
| 13 | 6 12 | syl | |- ( ph -> M e. CMnd ) |
| 14 | 6 | crngringd | |- ( ph -> S e. Ring ) |
| 15 | 3 | ringmgp | |- ( S e. Ring -> M e. Mnd ) |
| 16 | 14 15 | syl | |- ( ph -> M e. Mnd ) |
| 17 | 16 | adantr | |- ( ( ph /\ v e. I ) -> M e. Mnd ) |
| 18 | 1 | psrbagf | |- ( B e. D -> B : I --> NN0 ) |
| 19 | 8 18 | syl | |- ( ph -> B : I --> NN0 ) |
| 20 | 19 | ffvelcdmda | |- ( ( ph /\ v e. I ) -> ( B ` v ) e. NN0 ) |
| 21 | elmapi | |- ( A e. ( K ^m I ) -> A : I --> K ) |
|
| 22 | 7 21 | syl | |- ( ph -> A : I --> K ) |
| 23 | 22 | ffvelcdmda | |- ( ( ph /\ v e. I ) -> ( A ` v ) e. K ) |
| 24 | 9 4 17 20 23 | mulgnn0cld | |- ( ( ph /\ v e. I ) -> ( ( B ` v ) .^ ( A ` v ) ) e. K ) |
| 25 | 24 | fmpttd | |- ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) : I --> K ) |
| 26 | 5 | mptexd | |- ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) e. _V ) |
| 27 | fvexd | |- ( ph -> ( 1r ` S ) e. _V ) |
|
| 28 | 25 | ffund | |- ( ph -> Fun ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) |
| 29 | 1 | psrbagfsupp | |- ( B e. D -> B finSupp 0 ) |
| 30 | 8 29 | syl | |- ( ph -> B finSupp 0 ) |
| 31 | ssidd | |- ( ph -> ( B supp 0 ) C_ ( B supp 0 ) ) |
|
| 32 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 33 | 19 31 5 32 | suppssr | |- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( B ` v ) = 0 ) |
| 34 | 33 | oveq1d | |- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( ( B ` v ) .^ ( A ` v ) ) = ( 0 .^ ( A ` v ) ) ) |
| 35 | eldifi | |- ( v e. ( I \ ( B supp 0 ) ) -> v e. I ) |
|
| 36 | 35 23 | sylan2 | |- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( A ` v ) e. K ) |
| 37 | 9 11 4 | mulg0 | |- ( ( A ` v ) e. K -> ( 0 .^ ( A ` v ) ) = ( 1r ` S ) ) |
| 38 | 36 37 | syl | |- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( 0 .^ ( A ` v ) ) = ( 1r ` S ) ) |
| 39 | 34 38 | eqtrd | |- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( ( B ` v ) .^ ( A ` v ) ) = ( 1r ` S ) ) |
| 40 | 39 5 | suppss2 | |- ( ph -> ( ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) supp ( 1r ` S ) ) C_ ( B supp 0 ) ) |
| 41 | 26 27 28 30 40 | fsuppsssuppgd | |- ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) finSupp ( 1r ` S ) ) |
| 42 | 9 11 13 5 25 41 | gsumcl | |- ( ph -> ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) e. K ) |