This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsval.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) | ||
| evlsval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsval.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | ||
| evlsval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evlsval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| evlsval.x | ⊢ 𝑋 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) | ||
| evlsval.y | ⊢ 𝑌 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) | ||
| Assertion | evlsval2 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ∧ ( ( 𝑄 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsval.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) | |
| 4 | evlsval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evlsval.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | |
| 6 | evlsval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | evlsval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 8 | evlsval.x | ⊢ 𝑋 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 9 | evlsval.y | ⊢ 𝑌 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | evlsval | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ℩ 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 12 | simp1 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐼 ∈ 𝑍 ) | |
| 13 | 4 | subrgcrng | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
| 15 | simp2 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑆 ∈ CRing ) | |
| 16 | ovex | ⊢ ( 𝐵 ↑m 𝐼 ) ∈ V | |
| 17 | 5 | pwscrng | ⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝐵 ↑m 𝐼 ) ∈ V ) → 𝑇 ∈ CRing ) |
| 18 | 15 16 17 | sylancl | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑇 ∈ CRing ) |
| 19 | 6 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ⊆ 𝐵 ) |
| 21 | 20 | resmptd | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ) |
| 22 | 21 8 | eqtr4di | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) = 𝑋 ) |
| 23 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑆 ∈ Ring ) |
| 25 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 26 | 5 6 25 | pwsdiagrhm | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐵 ↑m 𝐼 ) ∈ V ) → ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ) |
| 27 | 24 16 26 | sylancl | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ) |
| 28 | simp3 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 29 | 4 | resrhm | ⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |
| 30 | 27 28 29 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |
| 31 | 22 30 | eqeltrrd | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑋 ∈ ( 𝑈 RingHom 𝑇 ) ) |
| 32 | 6 | fvexi | ⊢ 𝐵 ∈ V |
| 33 | simpl1 | ⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑍 ) | |
| 34 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐼 ∈ 𝑍 ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑔 : 𝐼 ⟶ 𝐵 ) ) | |
| 35 | 32 33 34 | sylancr | ⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑔 : 𝐼 ⟶ 𝐵 ) ) |
| 36 | 35 | biimpa | ⊢ ( ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑔 : 𝐼 ⟶ 𝐵 ) |
| 37 | simplr | ⊢ ( ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑥 ∈ 𝐼 ) | |
| 38 | 36 37 | ffvelcdmd | ⊢ ( ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 39 | 38 | fmpttd | ⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) : ( 𝐵 ↑m 𝐼 ) ⟶ 𝐵 ) |
| 40 | simpl2 | ⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ CRing ) | |
| 41 | 5 6 11 | pwselbasb | ⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝐵 ↑m 𝐼 ) ∈ V ) → ( ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ↔ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) : ( 𝐵 ↑m 𝐼 ) ⟶ 𝐵 ) ) |
| 42 | 40 16 41 | sylancl | ⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ↔ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) : ( 𝐵 ↑m 𝐼 ) ⟶ 𝐵 ) ) |
| 43 | 39 42 | mpbird | ⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) |
| 44 | 43 9 | fmptd | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑌 : 𝐼 ⟶ ( Base ‘ 𝑇 ) ) |
| 45 | 2 11 7 3 12 14 18 31 44 | evlseu | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ∃! 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ) |
| 46 | riotacl2 | ⊢ ( ∃! 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) → ( ℩ 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ) ∈ { 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ∣ ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) } ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ℩ 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ) ∈ { 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ∣ ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) } ) |
| 48 | 10 47 | eqeltrd | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ { 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ∣ ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) } ) |
| 49 | coeq1 | ⊢ ( 𝑚 = 𝑄 → ( 𝑚 ∘ 𝐴 ) = ( 𝑄 ∘ 𝐴 ) ) | |
| 50 | 49 | eqeq1d | ⊢ ( 𝑚 = 𝑄 → ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ↔ ( 𝑄 ∘ 𝐴 ) = 𝑋 ) ) |
| 51 | coeq1 | ⊢ ( 𝑚 = 𝑄 → ( 𝑚 ∘ 𝑉 ) = ( 𝑄 ∘ 𝑉 ) ) | |
| 52 | 51 | eqeq1d | ⊢ ( 𝑚 = 𝑄 → ( ( 𝑚 ∘ 𝑉 ) = 𝑌 ↔ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) |
| 53 | 50 52 | anbi12d | ⊢ ( 𝑚 = 𝑄 → ( ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ↔ ( ( 𝑄 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) ) |
| 54 | 53 | elrab | ⊢ ( 𝑄 ∈ { 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ∣ ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) } ↔ ( 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ∧ ( ( 𝑄 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) ) |
| 55 | 48 54 | sylib | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ∧ ( ( 𝑄 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) ) |