This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsval.w | |- W = ( I mPoly U ) |
||
| evlsval.v | |- V = ( I mVar U ) |
||
| evlsval.u | |- U = ( S |`s R ) |
||
| evlsval.t | |- T = ( S ^s ( B ^m I ) ) |
||
| evlsval.b | |- B = ( Base ` S ) |
||
| evlsval.a | |- A = ( algSc ` W ) |
||
| evlsval.x | |- X = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
||
| evlsval.y | |- Y = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) |
||
| Assertion | evlsval2 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q e. ( W RingHom T ) /\ ( ( Q o. A ) = X /\ ( Q o. V ) = Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsval.w | |- W = ( I mPoly U ) |
|
| 3 | evlsval.v | |- V = ( I mVar U ) |
|
| 4 | evlsval.u | |- U = ( S |`s R ) |
|
| 5 | evlsval.t | |- T = ( S ^s ( B ^m I ) ) |
|
| 6 | evlsval.b | |- B = ( Base ` S ) |
|
| 7 | evlsval.a | |- A = ( algSc ` W ) |
|
| 8 | evlsval.x | |- X = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
|
| 9 | evlsval.y | |- Y = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | evlsval | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( iota_ m e. ( W RingHom T ) ( ( m o. A ) = X /\ ( m o. V ) = Y ) ) ) |
| 11 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 12 | simp1 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> I e. Z ) |
|
| 13 | 4 | subrgcrng | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
| 14 | 13 | 3adant1 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
| 15 | simp2 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> S e. CRing ) |
|
| 16 | ovex | |- ( B ^m I ) e. _V |
|
| 17 | 5 | pwscrng | |- ( ( S e. CRing /\ ( B ^m I ) e. _V ) -> T e. CRing ) |
| 18 | 15 16 17 | sylancl | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> T e. CRing ) |
| 19 | 6 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 20 | 19 | 3ad2ant3 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> R C_ B ) |
| 21 | 20 | resmptd | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( x e. B |-> ( ( B ^m I ) X. { x } ) ) |` R ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ) |
| 22 | 21 8 | eqtr4di | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( x e. B |-> ( ( B ^m I ) X. { x } ) ) |` R ) = X ) |
| 23 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 24 | 23 | 3ad2ant2 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> S e. Ring ) |
| 25 | eqid | |- ( x e. B |-> ( ( B ^m I ) X. { x } ) ) = ( x e. B |-> ( ( B ^m I ) X. { x } ) ) |
|
| 26 | 5 6 25 | pwsdiagrhm | |- ( ( S e. Ring /\ ( B ^m I ) e. _V ) -> ( x e. B |-> ( ( B ^m I ) X. { x } ) ) e. ( S RingHom T ) ) |
| 27 | 24 16 26 | sylancl | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( x e. B |-> ( ( B ^m I ) X. { x } ) ) e. ( S RingHom T ) ) |
| 28 | simp3 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> R e. ( SubRing ` S ) ) |
|
| 29 | 4 | resrhm | |- ( ( ( x e. B |-> ( ( B ^m I ) X. { x } ) ) e. ( S RingHom T ) /\ R e. ( SubRing ` S ) ) -> ( ( x e. B |-> ( ( B ^m I ) X. { x } ) ) |` R ) e. ( U RingHom T ) ) |
| 30 | 27 28 29 | syl2anc | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( x e. B |-> ( ( B ^m I ) X. { x } ) ) |` R ) e. ( U RingHom T ) ) |
| 31 | 22 30 | eqeltrrd | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> X e. ( U RingHom T ) ) |
| 32 | 6 | fvexi | |- B e. _V |
| 33 | simpl1 | |- ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) -> I e. Z ) |
|
| 34 | elmapg | |- ( ( B e. _V /\ I e. Z ) -> ( g e. ( B ^m I ) <-> g : I --> B ) ) |
|
| 35 | 32 33 34 | sylancr | |- ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) -> ( g e. ( B ^m I ) <-> g : I --> B ) ) |
| 36 | 35 | biimpa | |- ( ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) /\ g e. ( B ^m I ) ) -> g : I --> B ) |
| 37 | simplr | |- ( ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) /\ g e. ( B ^m I ) ) -> x e. I ) |
|
| 38 | 36 37 | ffvelcdmd | |- ( ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) /\ g e. ( B ^m I ) ) -> ( g ` x ) e. B ) |
| 39 | 38 | fmpttd | |- ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) -> ( g e. ( B ^m I ) |-> ( g ` x ) ) : ( B ^m I ) --> B ) |
| 40 | simpl2 | |- ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) -> S e. CRing ) |
|
| 41 | 5 6 11 | pwselbasb | |- ( ( S e. CRing /\ ( B ^m I ) e. _V ) -> ( ( g e. ( B ^m I ) |-> ( g ` x ) ) e. ( Base ` T ) <-> ( g e. ( B ^m I ) |-> ( g ` x ) ) : ( B ^m I ) --> B ) ) |
| 42 | 40 16 41 | sylancl | |- ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) -> ( ( g e. ( B ^m I ) |-> ( g ` x ) ) e. ( Base ` T ) <-> ( g e. ( B ^m I ) |-> ( g ` x ) ) : ( B ^m I ) --> B ) ) |
| 43 | 39 42 | mpbird | |- ( ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) /\ x e. I ) -> ( g e. ( B ^m I ) |-> ( g ` x ) ) e. ( Base ` T ) ) |
| 44 | 43 9 | fmptd | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Y : I --> ( Base ` T ) ) |
| 45 | 2 11 7 3 12 14 18 31 44 | evlseu | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> E! m e. ( W RingHom T ) ( ( m o. A ) = X /\ ( m o. V ) = Y ) ) |
| 46 | riotacl2 | |- ( E! m e. ( W RingHom T ) ( ( m o. A ) = X /\ ( m o. V ) = Y ) -> ( iota_ m e. ( W RingHom T ) ( ( m o. A ) = X /\ ( m o. V ) = Y ) ) e. { m e. ( W RingHom T ) | ( ( m o. A ) = X /\ ( m o. V ) = Y ) } ) |
|
| 47 | 45 46 | syl | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( iota_ m e. ( W RingHom T ) ( ( m o. A ) = X /\ ( m o. V ) = Y ) ) e. { m e. ( W RingHom T ) | ( ( m o. A ) = X /\ ( m o. V ) = Y ) } ) |
| 48 | 10 47 | eqeltrd | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. { m e. ( W RingHom T ) | ( ( m o. A ) = X /\ ( m o. V ) = Y ) } ) |
| 49 | coeq1 | |- ( m = Q -> ( m o. A ) = ( Q o. A ) ) |
|
| 50 | 49 | eqeq1d | |- ( m = Q -> ( ( m o. A ) = X <-> ( Q o. A ) = X ) ) |
| 51 | coeq1 | |- ( m = Q -> ( m o. V ) = ( Q o. V ) ) |
|
| 52 | 51 | eqeq1d | |- ( m = Q -> ( ( m o. V ) = Y <-> ( Q o. V ) = Y ) ) |
| 53 | 50 52 | anbi12d | |- ( m = Q -> ( ( ( m o. A ) = X /\ ( m o. V ) = Y ) <-> ( ( Q o. A ) = X /\ ( Q o. V ) = Y ) ) ) |
| 54 | 53 | elrab | |- ( Q e. { m e. ( W RingHom T ) | ( ( m o. A ) = X /\ ( m o. V ) = Y ) } <-> ( Q e. ( W RingHom T ) /\ ( ( Q o. A ) = X /\ ( Q o. V ) = Y ) ) ) |
| 55 | 48 54 | sylib | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q e. ( W RingHom T ) /\ ( ( Q o. A ) = X /\ ( Q o. V ) = Y ) ) ) |