This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsrhm.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsrhm.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsrhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsrhm.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | ||
| evlsrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsrhm.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsrhm.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsrhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evlsrhm.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | |
| 5 | evlsrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 ) | |
| 7 | eqid | ⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) | |
| 10 | 1 2 6 3 4 5 7 8 9 | evlsval2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ∧ ( ( 𝑄 ∘ ( algSc ‘ 𝑊 ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) ) ) ) |
| 11 | 10 | simpld | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |