This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015) (Revised by AV, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem4.b | |- B = ( Base ` R ) |
|
| evlslem4.z | |- .0. = ( 0g ` R ) |
||
| evlslem4.t | |- .x. = ( .r ` R ) |
||
| evlslem4.r | |- ( ph -> R e. Ring ) |
||
| evlslem4.x | |- ( ( ph /\ x e. I ) -> X e. B ) |
||
| evlslem4.y | |- ( ( ph /\ y e. J ) -> Y e. B ) |
||
| evlslem4.i | |- ( ph -> I e. V ) |
||
| evlslem4.j | |- ( ph -> J e. W ) |
||
| Assertion | evlslem4 | |- ( ph -> ( ( x e. I , y e. J |-> ( X .x. Y ) ) supp .0. ) C_ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem4.b | |- B = ( Base ` R ) |
|
| 2 | evlslem4.z | |- .0. = ( 0g ` R ) |
|
| 3 | evlslem4.t | |- .x. = ( .r ` R ) |
|
| 4 | evlslem4.r | |- ( ph -> R e. Ring ) |
|
| 5 | evlslem4.x | |- ( ( ph /\ x e. I ) -> X e. B ) |
|
| 6 | evlslem4.y | |- ( ( ph /\ y e. J ) -> Y e. B ) |
|
| 7 | evlslem4.i | |- ( ph -> I e. V ) |
|
| 8 | evlslem4.j | |- ( ph -> J e. W ) |
|
| 9 | simp2 | |- ( ( ph /\ x e. I /\ y e. J ) -> x e. I ) |
|
| 10 | 5 | 3adant3 | |- ( ( ph /\ x e. I /\ y e. J ) -> X e. B ) |
| 11 | eqid | |- ( x e. I |-> X ) = ( x e. I |-> X ) |
|
| 12 | 11 | fvmpt2 | |- ( ( x e. I /\ X e. B ) -> ( ( x e. I |-> X ) ` x ) = X ) |
| 13 | 9 10 12 | syl2anc | |- ( ( ph /\ x e. I /\ y e. J ) -> ( ( x e. I |-> X ) ` x ) = X ) |
| 14 | simp3 | |- ( ( ph /\ x e. I /\ y e. J ) -> y e. J ) |
|
| 15 | eqid | |- ( y e. J |-> Y ) = ( y e. J |-> Y ) |
|
| 16 | 15 | fvmpt2 | |- ( ( y e. J /\ Y e. B ) -> ( ( y e. J |-> Y ) ` y ) = Y ) |
| 17 | 14 6 16 | 3imp3i2an | |- ( ( ph /\ x e. I /\ y e. J ) -> ( ( y e. J |-> Y ) ` y ) = Y ) |
| 18 | 13 17 | oveq12d | |- ( ( ph /\ x e. I /\ y e. J ) -> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) = ( X .x. Y ) ) |
| 19 | 18 | mpoeq3dva | |- ( ph -> ( x e. I , y e. J |-> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) ) = ( x e. I , y e. J |-> ( X .x. Y ) ) ) |
| 20 | nfcv | |- F/_ i ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) |
|
| 21 | nfcv | |- F/_ j ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) |
|
| 22 | nffvmpt1 | |- F/_ x ( ( x e. I |-> X ) ` i ) |
|
| 23 | nfcv | |- F/_ x .x. |
|
| 24 | nfcv | |- F/_ x ( ( y e. J |-> Y ) ` j ) |
|
| 25 | 22 23 24 | nfov | |- F/_ x ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) |
| 26 | nfcv | |- F/_ y ( ( x e. I |-> X ) ` i ) |
|
| 27 | nfcv | |- F/_ y .x. |
|
| 28 | nffvmpt1 | |- F/_ y ( ( y e. J |-> Y ) ` j ) |
|
| 29 | 26 27 28 | nfov | |- F/_ y ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) |
| 30 | fveq2 | |- ( x = i -> ( ( x e. I |-> X ) ` x ) = ( ( x e. I |-> X ) ` i ) ) |
|
| 31 | fveq2 | |- ( y = j -> ( ( y e. J |-> Y ) ` y ) = ( ( y e. J |-> Y ) ` j ) ) |
|
| 32 | 30 31 | oveqan12d | |- ( ( x = i /\ y = j ) -> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) = ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
| 33 | 20 21 25 29 32 | cbvmpo | |- ( x e. I , y e. J |-> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) ) = ( i e. I , j e. J |-> ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
| 34 | vex | |- i e. _V |
|
| 35 | vex | |- j e. _V |
|
| 36 | 34 35 | eqop2 | |- ( z = <. i , j >. <-> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) = i /\ ( 2nd ` z ) = j ) ) ) |
| 37 | fveq2 | |- ( ( 1st ` z ) = i -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) = ( ( x e. I |-> X ) ` i ) ) |
|
| 38 | fveq2 | |- ( ( 2nd ` z ) = j -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) = ( ( y e. J |-> Y ) ` j ) ) |
|
| 39 | 37 38 | oveqan12d | |- ( ( ( 1st ` z ) = i /\ ( 2nd ` z ) = j ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
| 40 | 36 39 | simplbiim | |- ( z = <. i , j >. -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
| 41 | 40 | mpompt | |- ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) = ( i e. I , j e. J |-> ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
| 42 | 33 41 | eqtr4i | |- ( x e. I , y e. J |-> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) ) = ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) |
| 43 | 19 42 | eqtr3di | |- ( ph -> ( x e. I , y e. J |-> ( X .x. Y ) ) = ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) ) |
| 44 | 43 | oveq1d | |- ( ph -> ( ( x e. I , y e. J |-> ( X .x. Y ) ) supp .0. ) = ( ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) supp .0. ) ) |
| 45 | difxp | |- ( ( I X. J ) \ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) = ( ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) u. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) |
|
| 46 | 45 | eleq2i | |- ( z e. ( ( I X. J ) \ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) <-> z e. ( ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) u. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) ) |
| 47 | elun | |- ( z e. ( ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) u. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) <-> ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) \/ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) ) |
|
| 48 | 46 47 | bitri | |- ( z e. ( ( I X. J ) \ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) <-> ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) \/ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) ) |
| 49 | xp1st | |- ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) -> ( 1st ` z ) e. ( I \ ( ( x e. I |-> X ) supp .0. ) ) ) |
|
| 50 | 5 | fmpttd | |- ( ph -> ( x e. I |-> X ) : I --> B ) |
| 51 | ssidd | |- ( ph -> ( ( x e. I |-> X ) supp .0. ) C_ ( ( x e. I |-> X ) supp .0. ) ) |
|
| 52 | 2 | fvexi | |- .0. e. _V |
| 53 | 52 | a1i | |- ( ph -> .0. e. _V ) |
| 54 | 50 51 7 53 | suppssr | |- ( ( ph /\ ( 1st ` z ) e. ( I \ ( ( x e. I |-> X ) supp .0. ) ) ) -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) = .0. ) |
| 55 | 49 54 | sylan2 | |- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) = .0. ) |
| 56 | 55 | oveq1d | |- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = ( .0. .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) |
| 57 | 6 | fmpttd | |- ( ph -> ( y e. J |-> Y ) : J --> B ) |
| 58 | xp2nd | |- ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) -> ( 2nd ` z ) e. J ) |
|
| 59 | ffvelcdm | |- ( ( ( y e. J |-> Y ) : J --> B /\ ( 2nd ` z ) e. J ) -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) e. B ) |
|
| 60 | 57 58 59 | syl2an | |- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) e. B ) |
| 61 | 1 3 2 | ringlz | |- ( ( R e. Ring /\ ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) e. B ) -> ( .0. .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
| 62 | 4 60 61 | syl2an2r | |- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( .0. .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
| 63 | 56 62 | eqtrd | |- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
| 64 | xp2nd | |- ( z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) -> ( 2nd ` z ) e. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) |
|
| 65 | ssidd | |- ( ph -> ( ( y e. J |-> Y ) supp .0. ) C_ ( ( y e. J |-> Y ) supp .0. ) ) |
|
| 66 | 57 65 8 53 | suppssr | |- ( ( ph /\ ( 2nd ` z ) e. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) = .0. ) |
| 67 | 64 66 | sylan2 | |- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) = .0. ) |
| 68 | 67 | oveq2d | |- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. .0. ) ) |
| 69 | xp1st | |- ( z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) -> ( 1st ` z ) e. I ) |
|
| 70 | ffvelcdm | |- ( ( ( x e. I |-> X ) : I --> B /\ ( 1st ` z ) e. I ) -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) e. B ) |
|
| 71 | 50 69 70 | syl2an | |- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) e. B ) |
| 72 | 1 3 2 | ringrz | |- ( ( R e. Ring /\ ( ( x e. I |-> X ) ` ( 1st ` z ) ) e. B ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. .0. ) = .0. ) |
| 73 | 4 71 72 | syl2an2r | |- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. .0. ) = .0. ) |
| 74 | 68 73 | eqtrd | |- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
| 75 | 63 74 | jaodan | |- ( ( ph /\ ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) \/ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
| 76 | 48 75 | sylan2b | |- ( ( ph /\ z e. ( ( I X. J ) \ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
| 77 | 7 8 | xpexd | |- ( ph -> ( I X. J ) e. _V ) |
| 78 | 76 77 | suppss2 | |- ( ph -> ( ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) supp .0. ) C_ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) |
| 79 | 44 78 | eqsstrd | |- ( ph -> ( ( x e. I , y e. J |-> ( X .x. Y ) ) supp .0. ) C_ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) |