This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their subring evaluation at a given point X is a ring homomorphism. (Contributed by Thierry Arnoux, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1maprhm.q | |- O = ( R evalSub1 S ) |
|
| evls1maprhm.p | |- P = ( Poly1 ` ( R |`s S ) ) |
||
| evls1maprhm.b | |- B = ( Base ` R ) |
||
| evls1maprhm.u | |- U = ( Base ` P ) |
||
| evls1maprhm.r | |- ( ph -> R e. CRing ) |
||
| evls1maprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
||
| evls1maprhm.y | |- ( ph -> X e. B ) |
||
| evls1maprhm.f | |- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
||
| Assertion | evls1maprhm | |- ( ph -> F e. ( P RingHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.q | |- O = ( R evalSub1 S ) |
|
| 2 | evls1maprhm.p | |- P = ( Poly1 ` ( R |`s S ) ) |
|
| 3 | evls1maprhm.b | |- B = ( Base ` R ) |
|
| 4 | evls1maprhm.u | |- U = ( Base ` P ) |
|
| 5 | evls1maprhm.r | |- ( ph -> R e. CRing ) |
|
| 6 | evls1maprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
|
| 7 | evls1maprhm.y | |- ( ph -> X e. B ) |
|
| 8 | evls1maprhm.f | |- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
|
| 9 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 10 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 11 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 12 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 13 | eqid | |- ( R |`s S ) = ( R |`s S ) |
|
| 14 | 13 | subrgcrng | |- ( ( R e. CRing /\ S e. ( SubRing ` R ) ) -> ( R |`s S ) e. CRing ) |
| 15 | 5 6 14 | syl2anc | |- ( ph -> ( R |`s S ) e. CRing ) |
| 16 | 2 | ply1crng | |- ( ( R |`s S ) e. CRing -> P e. CRing ) |
| 17 | 15 16 | syl | |- ( ph -> P e. CRing ) |
| 18 | 17 | crngringd | |- ( ph -> P e. Ring ) |
| 19 | 5 | crngringd | |- ( ph -> R e. Ring ) |
| 20 | fveq2 | |- ( p = ( 1r ` P ) -> ( O ` p ) = ( O ` ( 1r ` P ) ) ) |
|
| 21 | 20 | fveq1d | |- ( p = ( 1r ` P ) -> ( ( O ` p ) ` X ) = ( ( O ` ( 1r ` P ) ) ` X ) ) |
| 22 | 4 9 | ringidcl | |- ( P e. Ring -> ( 1r ` P ) e. U ) |
| 23 | 18 22 | syl | |- ( ph -> ( 1r ` P ) e. U ) |
| 24 | fvexd | |- ( ph -> ( ( O ` ( 1r ` P ) ) ` X ) e. _V ) |
|
| 25 | 8 21 23 24 | fvmptd3 | |- ( ph -> ( F ` ( 1r ` P ) ) = ( ( O ` ( 1r ` P ) ) ` X ) ) |
| 26 | 13 10 | subrg1 | |- ( S e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` ( R |`s S ) ) ) |
| 27 | 6 26 | syl | |- ( ph -> ( 1r ` R ) = ( 1r ` ( R |`s S ) ) ) |
| 28 | 27 | fveq2d | |- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) ) |
| 29 | 15 | crngringd | |- ( ph -> ( R |`s S ) e. Ring ) |
| 30 | eqid | |- ( algSc ` P ) = ( algSc ` P ) |
|
| 31 | eqid | |- ( 1r ` ( R |`s S ) ) = ( 1r ` ( R |`s S ) ) |
|
| 32 | 2 30 31 9 | ply1scl1 | |- ( ( R |`s S ) e. Ring -> ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) = ( 1r ` P ) ) |
| 33 | 29 32 | syl | |- ( ph -> ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) = ( 1r ` P ) ) |
| 34 | 28 33 | eqtr2d | |- ( ph -> ( 1r ` P ) = ( ( algSc ` P ) ` ( 1r ` R ) ) ) |
| 35 | 34 | fveq2d | |- ( ph -> ( O ` ( 1r ` P ) ) = ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
| 36 | 35 | fveq1d | |- ( ph -> ( ( O ` ( 1r ` P ) ) ` X ) = ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` X ) ) |
| 37 | 10 | subrg1cl | |- ( S e. ( SubRing ` R ) -> ( 1r ` R ) e. S ) |
| 38 | 6 37 | syl | |- ( ph -> ( 1r ` R ) e. S ) |
| 39 | 1 2 13 3 30 5 6 38 7 | evls1scafv | |- ( ph -> ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` X ) = ( 1r ` R ) ) |
| 40 | 25 36 39 | 3eqtrd | |- ( ph -> ( F ` ( 1r ` P ) ) = ( 1r ` R ) ) |
| 41 | 5 | adantr | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> R e. CRing ) |
| 42 | 6 | adantr | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> S e. ( SubRing ` R ) ) |
| 43 | simprl | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> q e. U ) |
|
| 44 | simprr | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> r e. U ) |
|
| 45 | 7 | adantr | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> X e. B ) |
| 46 | 1 3 2 13 4 11 12 41 42 43 44 45 | evls1muld | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( .r ` P ) r ) ) ` X ) = ( ( ( O ` q ) ` X ) ( .r ` R ) ( ( O ` r ) ` X ) ) ) |
| 47 | fveq2 | |- ( p = ( q ( .r ` P ) r ) -> ( O ` p ) = ( O ` ( q ( .r ` P ) r ) ) ) |
|
| 48 | 47 | fveq1d | |- ( p = ( q ( .r ` P ) r ) -> ( ( O ` p ) ` X ) = ( ( O ` ( q ( .r ` P ) r ) ) ` X ) ) |
| 49 | 18 | adantr | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> P e. Ring ) |
| 50 | 4 11 49 43 44 | ringcld | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( q ( .r ` P ) r ) e. U ) |
| 51 | fvexd | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( .r ` P ) r ) ) ` X ) e. _V ) |
|
| 52 | 8 48 50 51 | fvmptd3 | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( O ` ( q ( .r ` P ) r ) ) ` X ) ) |
| 53 | fveq2 | |- ( p = q -> ( O ` p ) = ( O ` q ) ) |
|
| 54 | 53 | fveq1d | |- ( p = q -> ( ( O ` p ) ` X ) = ( ( O ` q ) ` X ) ) |
| 55 | fvexd | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` q ) ` X ) e. _V ) |
|
| 56 | 8 54 43 55 | fvmptd3 | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` q ) = ( ( O ` q ) ` X ) ) |
| 57 | fveq2 | |- ( p = r -> ( O ` p ) = ( O ` r ) ) |
|
| 58 | 57 | fveq1d | |- ( p = r -> ( ( O ` p ) ` X ) = ( ( O ` r ) ` X ) ) |
| 59 | fvexd | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` r ) ` X ) e. _V ) |
|
| 60 | 8 58 44 59 | fvmptd3 | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` r ) = ( ( O ` r ) ` X ) ) |
| 61 | 56 60 | oveq12d | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( F ` q ) ( .r ` R ) ( F ` r ) ) = ( ( ( O ` q ) ` X ) ( .r ` R ) ( ( O ` r ) ` X ) ) ) |
| 62 | 46 52 61 | 3eqtr4d | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( F ` q ) ( .r ` R ) ( F ` r ) ) ) |
| 63 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 64 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 65 | eqid | |- ( eval1 ` R ) = ( eval1 ` R ) |
|
| 66 | 1 3 2 13 4 65 5 6 | ressply1evl | |- ( ph -> O = ( ( eval1 ` R ) |` U ) ) |
| 67 | 66 | adantr | |- ( ( ph /\ p e. U ) -> O = ( ( eval1 ` R ) |` U ) ) |
| 68 | 67 | fveq1d | |- ( ( ph /\ p e. U ) -> ( O ` p ) = ( ( ( eval1 ` R ) |` U ) ` p ) ) |
| 69 | simpr | |- ( ( ph /\ p e. U ) -> p e. U ) |
|
| 70 | 69 | fvresd | |- ( ( ph /\ p e. U ) -> ( ( ( eval1 ` R ) |` U ) ` p ) = ( ( eval1 ` R ) ` p ) ) |
| 71 | 68 70 | eqtrd | |- ( ( ph /\ p e. U ) -> ( O ` p ) = ( ( eval1 ` R ) ` p ) ) |
| 72 | 71 | fveq1d | |- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` X ) = ( ( ( eval1 ` R ) ` p ) ` X ) ) |
| 73 | eqid | |- ( Poly1 ` R ) = ( Poly1 ` R ) |
|
| 74 | eqid | |- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
|
| 75 | 5 | adantr | |- ( ( ph /\ p e. U ) -> R e. CRing ) |
| 76 | 7 | adantr | |- ( ( ph /\ p e. U ) -> X e. B ) |
| 77 | eqid | |- ( PwSer1 ` ( R |`s S ) ) = ( PwSer1 ` ( R |`s S ) ) |
|
| 78 | eqid | |- ( Base ` ( PwSer1 ` ( R |`s S ) ) ) = ( Base ` ( PwSer1 ` ( R |`s S ) ) ) |
|
| 79 | 73 13 2 4 6 77 78 74 | ressply1bas2 | |- ( ph -> U = ( ( Base ` ( PwSer1 ` ( R |`s S ) ) ) i^i ( Base ` ( Poly1 ` R ) ) ) ) |
| 80 | inss2 | |- ( ( Base ` ( PwSer1 ` ( R |`s S ) ) ) i^i ( Base ` ( Poly1 ` R ) ) ) C_ ( Base ` ( Poly1 ` R ) ) |
|
| 81 | 79 80 | eqsstrdi | |- ( ph -> U C_ ( Base ` ( Poly1 ` R ) ) ) |
| 82 | 81 | sselda | |- ( ( ph /\ p e. U ) -> p e. ( Base ` ( Poly1 ` R ) ) ) |
| 83 | 65 73 3 74 75 76 82 | fveval1fvcl | |- ( ( ph /\ p e. U ) -> ( ( ( eval1 ` R ) ` p ) ` X ) e. B ) |
| 84 | 72 83 | eqeltrd | |- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` X ) e. B ) |
| 85 | 84 8 | fmptd | |- ( ph -> F : U --> B ) |
| 86 | 1 3 2 13 4 63 64 41 42 43 44 45 | evls1addd | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( +g ` P ) r ) ) ` X ) = ( ( ( O ` q ) ` X ) ( +g ` R ) ( ( O ` r ) ` X ) ) ) |
| 87 | fveq2 | |- ( p = ( q ( +g ` P ) r ) -> ( O ` p ) = ( O ` ( q ( +g ` P ) r ) ) ) |
|
| 88 | 87 | fveq1d | |- ( p = ( q ( +g ` P ) r ) -> ( ( O ` p ) ` X ) = ( ( O ` ( q ( +g ` P ) r ) ) ` X ) ) |
| 89 | 49 | ringgrpd | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> P e. Grp ) |
| 90 | 4 63 89 43 44 | grpcld | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( q ( +g ` P ) r ) e. U ) |
| 91 | fvexd | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( +g ` P ) r ) ) ` X ) e. _V ) |
|
| 92 | 8 88 90 91 | fvmptd3 | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( O ` ( q ( +g ` P ) r ) ) ` X ) ) |
| 93 | 56 60 | oveq12d | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( F ` q ) ( +g ` R ) ( F ` r ) ) = ( ( ( O ` q ) ` X ) ( +g ` R ) ( ( O ` r ) ` X ) ) ) |
| 94 | 86 92 93 | 3eqtr4d | |- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( F ` q ) ( +g ` R ) ( F ` r ) ) ) |
| 95 | 4 9 10 11 12 18 19 40 62 3 63 64 85 94 | isrhmd | |- ( ph -> F e. ( P RingHom R ) ) |