This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the evaluation function of a polynomial is an element of the underlying ring. (Contributed by AV, 17-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fveval1fvcl.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| fveval1fvcl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| fveval1fvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| fveval1fvcl.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| fveval1fvcl.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| fveval1fvcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| fveval1fvcl.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) | ||
| Assertion | fveval1fvcl | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveval1fvcl.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | fveval1fvcl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | fveval1fvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | fveval1fvcl.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | fveval1fvcl.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | fveval1fvcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | fveval1fvcl.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) | |
| 8 | eqid | ⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) | |
| 10 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 12 | 1 2 8 3 | evl1rhm | ⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 13 | 4 9 | rhmf | ⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 14 | 5 12 13 | 3syl | ⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 15 | 14 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 16 | 8 3 9 5 11 15 | pwselbas | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) : 𝐵 ⟶ 𝐵 ) |
| 17 | 16 6 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |