This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| ressply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| ressply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | ||
| ressply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| ressply1.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| ressply1bas2.w | ⊢ 𝑊 = ( PwSer1 ‘ 𝐻 ) | ||
| ressply1bas2.c | ⊢ 𝐶 = ( Base ‘ 𝑊 ) | ||
| ressply1bas2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| Assertion | ressply1bas2 | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 ∩ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ressply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | ressply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | |
| 4 | ressply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | ressply1.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 6 | ressply1bas2.w | ⊢ 𝑊 = ( PwSer1 ‘ 𝐻 ) | |
| 7 | ressply1bas2.c | ⊢ 𝐶 = ( Base ‘ 𝑊 ) | |
| 8 | ressply1bas2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 9 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 10 | eqid | ⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) | |
| 11 | 3 4 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) ) |
| 12 | 1on | ⊢ 1o ∈ On | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 1o ∈ On ) |
| 14 | eqid | ⊢ ( 1o mPwSer 𝐻 ) = ( 1o mPwSer 𝐻 ) | |
| 15 | 6 7 14 | psr1bas2 | ⊢ 𝐶 = ( Base ‘ ( 1o mPwSer 𝐻 ) ) |
| 16 | 1 8 | ply1bas | ⊢ 𝐾 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 17 | 9 2 10 11 13 5 14 15 16 | ressmplbas2 | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 ∩ 𝐾 ) ) |