This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The one scalar is the unit polynomial. (Contributed by Stefan O'Rear, 1-Apr-2015) (Proof shortened by SN, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| ply1scl1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ply1scl1.n | ⊢ 𝑁 = ( 1r ‘ 𝑃 ) | ||
| Assertion | ply1scl1 | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | ply1scl1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | ply1scl1.n | ⊢ 𝑁 = ( 1r ‘ 𝑃 ) | |
| 5 | 1 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 7 | 3 6 | eqtrid | ⊢ ( 𝑅 ∈ Ring → 1 = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = ( 𝐴 ‘ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 10 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 11 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 12 | 2 9 10 11 | ascl1 | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) = ( 1r ‘ 𝑃 ) ) |
| 13 | 8 12 | eqtrd | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = ( 1r ‘ 𝑃 ) ) |
| 14 | 13 4 | eqtr4di | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = 𝑁 ) |