This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given two equipollent sets, a bijection can always be chosen which fixes a single point. (Contributed by Stefan O'Rear, 9-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enfixsn | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → 𝑋 ≈ 𝑌 ) | |
| 2 | bren | ⊢ ( 𝑋 ≈ 𝑌 ↔ ∃ 𝑔 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → ∃ 𝑔 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) |
| 4 | relen | ⊢ Rel ≈ | |
| 5 | 4 | brrelex2i | ⊢ ( 𝑋 ≈ 𝑌 → 𝑌 ∈ V ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → 𝑌 ∈ V ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → 𝑌 ∈ V ) |
| 8 | f1of | ⊢ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 → 𝑔 : 𝑋 ⟶ 𝑌 ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → 𝑔 : 𝑋 ⟶ 𝑌 ) |
| 10 | simpl1 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → 𝐴 ∈ 𝑋 ) | |
| 11 | 9 10 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 ) |
| 12 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → 𝐵 ∈ 𝑌 ) | |
| 13 | difsnen | ⊢ ( ( 𝑌 ∈ V ∧ ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ≈ ( 𝑌 ∖ { 𝐵 } ) ) | |
| 14 | 7 11 12 13 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ≈ ( 𝑌 ∖ { 𝐵 } ) ) |
| 15 | bren | ⊢ ( ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ≈ ( 𝑌 ∖ { 𝐵 } ) ↔ ∃ ℎ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) | |
| 16 | 14 15 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ∃ ℎ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) |
| 17 | fvex | ⊢ ( 𝑔 ‘ 𝐴 ) ∈ V | |
| 18 | 17 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( 𝑔 ‘ 𝐴 ) ∈ V ) |
| 19 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝐵 ∈ 𝑌 ) | |
| 20 | f1osng | ⊢ ( ( ( 𝑔 ‘ 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } ) |
| 22 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) | |
| 23 | disjdif | ⊢ ( { ( 𝑔 ‘ 𝐴 ) } ∩ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ∅ | |
| 24 | 23 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { ( 𝑔 ‘ 𝐴 ) } ∩ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ∅ ) |
| 25 | disjdif | ⊢ ( { 𝐵 } ∩ ( 𝑌 ∖ { 𝐵 } ) ) = ∅ | |
| 26 | 25 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 𝐵 } ∩ ( 𝑌 ∖ { 𝐵 } ) ) = ∅ ) |
| 27 | f1oun | ⊢ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ∧ ( ( { ( 𝑔 ‘ 𝐴 ) } ∩ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ∅ ∧ ( { 𝐵 } ∩ ( 𝑌 ∖ { 𝐵 } ) ) = ∅ ) ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) ) | |
| 28 | 21 22 24 26 27 | syl22anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) ) |
| 29 | 8 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝑔 : 𝑋 ⟶ 𝑌 ) |
| 30 | simpl1 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝐴 ∈ 𝑋 ) | |
| 31 | 29 30 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 ) |
| 32 | uncom | ⊢ ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ( ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ∪ { ( 𝑔 ‘ 𝐴 ) } ) | |
| 33 | difsnid | ⊢ ( ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 → ( ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ∪ { ( 𝑔 ‘ 𝐴 ) } ) = 𝑌 ) | |
| 34 | 32 33 | eqtrid | ⊢ ( ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 → ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = 𝑌 ) |
| 35 | 31 34 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = 𝑌 ) |
| 36 | uncom | ⊢ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) = ( ( 𝑌 ∖ { 𝐵 } ) ∪ { 𝐵 } ) | |
| 37 | difsnid | ⊢ ( 𝐵 ∈ 𝑌 → ( ( 𝑌 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = 𝑌 ) | |
| 38 | 36 37 | eqtrid | ⊢ ( 𝐵 ∈ 𝑌 → ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) = 𝑌 ) |
| 39 | 19 38 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) = 𝑌 ) |
| 40 | f1oeq23 | ⊢ ( ( ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = 𝑌 ∧ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) = 𝑌 ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) ↔ ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) ) | |
| 41 | 35 39 40 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) ↔ ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 42 | 28 41 | mpbid | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) |
| 43 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 44 | f1oco | ⊢ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : 𝑌 –1-1-onto→ 𝑌 ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) | |
| 45 | 42 43 44 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) |
| 46 | f1ofn | ⊢ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 → 𝑔 Fn 𝑋 ) | |
| 47 | 46 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝑔 Fn 𝑋 ) |
| 48 | fvco2 | ⊢ ( ( 𝑔 Fn 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) | |
| 49 | 47 30 48 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| 50 | f1ofn | ⊢ ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } → { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } Fn { ( 𝑔 ‘ 𝐴 ) } ) | |
| 51 | 21 50 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } Fn { ( 𝑔 ‘ 𝐴 ) } ) |
| 52 | f1ofn | ⊢ ( ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) → ℎ Fn ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) | |
| 53 | 52 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ℎ Fn ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) |
| 54 | 17 | snid | ⊢ ( 𝑔 ‘ 𝐴 ) ∈ { ( 𝑔 ‘ 𝐴 ) } |
| 55 | 54 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( 𝑔 ‘ 𝐴 ) ∈ { ( 𝑔 ‘ 𝐴 ) } ) |
| 56 | fvun1 | ⊢ ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } Fn { ( 𝑔 ‘ 𝐴 ) } ∧ ℎ Fn ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ∧ ( ( { ( 𝑔 ‘ 𝐴 ) } ∩ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ∅ ∧ ( 𝑔 ‘ 𝐴 ) ∈ { ( 𝑔 ‘ 𝐴 ) } ) ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) = ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) ) | |
| 57 | 51 53 24 55 56 | syl112anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) = ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| 58 | fvsng | ⊢ ( ( ( 𝑔 ‘ 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) = 𝐵 ) | |
| 59 | 18 19 58 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) = 𝐵 ) |
| 60 | 49 57 59 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = 𝐵 ) |
| 61 | snex | ⊢ { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∈ V | |
| 62 | vex | ⊢ ℎ ∈ V | |
| 63 | 61 62 | unex | ⊢ ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∈ V |
| 64 | vex | ⊢ 𝑔 ∈ V | |
| 65 | 63 64 | coex | ⊢ ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ∈ V |
| 66 | f1oeq1 | ⊢ ( 𝑓 = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) → ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ↔ ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) ) | |
| 67 | fveq1 | ⊢ ( 𝑓 = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) → ( 𝑓 ‘ 𝐴 ) = ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) ) | |
| 68 | 67 | eqeq1d | ⊢ ( 𝑓 = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) → ( ( 𝑓 ‘ 𝐴 ) = 𝐵 ↔ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = 𝐵 ) ) |
| 69 | 66 68 | anbi12d | ⊢ ( 𝑓 = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) → ( ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ↔ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ∧ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = 𝐵 ) ) ) |
| 70 | 65 69 | spcev | ⊢ ( ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ∧ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = 𝐵 ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |
| 71 | 45 60 70 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |
| 72 | 71 | expr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) ) |
| 73 | 72 | exlimdv | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( ∃ ℎ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) ) |
| 74 | 16 73 | mpd | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |
| 75 | 3 74 | exlimddv | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |