This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elfuns.1 | |- F e. _V |
|
| Assertion | elfuns | |- ( F e. Funs <-> Fun F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfuns.1 | |- F e. _V |
|
| 2 | elrel | |- ( ( Rel F /\ p e. F ) -> E. x E. y p = <. x , y >. ) |
|
| 3 | 2 | ex | |- ( Rel F -> ( p e. F -> E. x E. y p = <. x , y >. ) ) |
| 4 | elrel | |- ( ( Rel F /\ q e. F ) -> E. a E. z q = <. a , z >. ) |
|
| 5 | 4 | ex | |- ( Rel F -> ( q e. F -> E. a E. z q = <. a , z >. ) ) |
| 6 | 3 5 | anim12d | |- ( Rel F -> ( ( p e. F /\ q e. F ) -> ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) ) ) |
| 7 | 6 | adantrd | |- ( Rel F -> ( ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) -> ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) ) ) |
| 8 | 7 | pm4.71rd | |- ( Rel F -> ( ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> ( ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) ) |
| 9 | 19.41vvvv | |- ( E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( E. x E. y E. a E. z ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
|
| 10 | ee4anv | |- ( E. x E. y E. a E. z ( p = <. x , y >. /\ q = <. a , z >. ) <-> ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) ) |
|
| 11 | 10 | anbi1i | |- ( ( E. x E. y E. a E. z ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
| 12 | 9 11 | bitr2i | |- ( ( ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
| 13 | 8 12 | bitrdi | |- ( Rel F -> ( ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) ) |
| 14 | 13 | 2exbidv | |- ( Rel F -> ( E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> E. p E. q E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) ) |
| 15 | excom13 | |- ( E. p E. q E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. x E. q E. p E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
|
| 16 | excom13 | |- ( E. q E. p E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. y E. p E. q E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
|
| 17 | exrot4 | |- ( E. p E. q E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. a E. z E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
|
| 18 | excom | |- ( E. a E. z E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. z E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
|
| 19 | df-3an | |- ( ( p = <. x , y >. /\ q = <. a , z >. /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
|
| 20 | 19 | 2exbii | |- ( E. p E. q ( p = <. x , y >. /\ q = <. a , z >. /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
| 21 | opex | |- <. x , y >. e. _V |
|
| 22 | opex | |- <. a , z >. e. _V |
|
| 23 | eleq1 | |- ( p = <. x , y >. -> ( p e. F <-> <. x , y >. e. F ) ) |
|
| 24 | 23 | anbi1d | |- ( p = <. x , y >. -> ( ( p e. F /\ q e. F ) <-> ( <. x , y >. e. F /\ q e. F ) ) ) |
| 25 | breq2 | |- ( p = <. x , y >. -> ( q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p <-> q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) ) |
|
| 26 | 24 25 | anbi12d | |- ( p = <. x , y >. -> ( ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> ( ( <. x , y >. e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) ) ) |
| 27 | eleq1 | |- ( q = <. a , z >. -> ( q e. F <-> <. a , z >. e. F ) ) |
|
| 28 | 27 | anbi2d | |- ( q = <. a , z >. -> ( ( <. x , y >. e. F /\ q e. F ) <-> ( <. x , y >. e. F /\ <. a , z >. e. F ) ) ) |
| 29 | breq1 | |- ( q = <. a , z >. -> ( q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. <-> <. a , z >. ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) ) |
|
| 30 | vex | |- x e. _V |
|
| 31 | vex | |- y e. _V |
|
| 32 | 22 30 31 | brtxp | |- ( <. a , z >. ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. <-> ( <. a , z >. 1st x /\ <. a , z >. ( ( _V \ _I ) o. 2nd ) y ) ) |
| 33 | vex | |- a e. _V |
|
| 34 | vex | |- z e. _V |
|
| 35 | 33 34 | br1steq | |- ( <. a , z >. 1st x <-> x = a ) |
| 36 | equcom | |- ( x = a <-> a = x ) |
|
| 37 | 35 36 | bitri | |- ( <. a , z >. 1st x <-> a = x ) |
| 38 | 22 31 | brco | |- ( <. a , z >. ( ( _V \ _I ) o. 2nd ) y <-> E. x ( <. a , z >. 2nd x /\ x ( _V \ _I ) y ) ) |
| 39 | 33 34 | br2ndeq | |- ( <. a , z >. 2nd x <-> x = z ) |
| 40 | 39 | anbi1i | |- ( ( <. a , z >. 2nd x /\ x ( _V \ _I ) y ) <-> ( x = z /\ x ( _V \ _I ) y ) ) |
| 41 | 40 | exbii | |- ( E. x ( <. a , z >. 2nd x /\ x ( _V \ _I ) y ) <-> E. x ( x = z /\ x ( _V \ _I ) y ) ) |
| 42 | breq1 | |- ( x = z -> ( x ( _V \ _I ) y <-> z ( _V \ _I ) y ) ) |
|
| 43 | brv | |- z _V y |
|
| 44 | brdif | |- ( z ( _V \ _I ) y <-> ( z _V y /\ -. z _I y ) ) |
|
| 45 | 43 44 | mpbiran | |- ( z ( _V \ _I ) y <-> -. z _I y ) |
| 46 | 31 | ideq | |- ( z _I y <-> z = y ) |
| 47 | equcom | |- ( z = y <-> y = z ) |
|
| 48 | 46 47 | bitri | |- ( z _I y <-> y = z ) |
| 49 | 48 | notbii | |- ( -. z _I y <-> -. y = z ) |
| 50 | 45 49 | bitri | |- ( z ( _V \ _I ) y <-> -. y = z ) |
| 51 | 42 50 | bitrdi | |- ( x = z -> ( x ( _V \ _I ) y <-> -. y = z ) ) |
| 52 | 51 | equsexvw | |- ( E. x ( x = z /\ x ( _V \ _I ) y ) <-> -. y = z ) |
| 53 | 38 41 52 | 3bitri | |- ( <. a , z >. ( ( _V \ _I ) o. 2nd ) y <-> -. y = z ) |
| 54 | 37 53 | anbi12i | |- ( ( <. a , z >. 1st x /\ <. a , z >. ( ( _V \ _I ) o. 2nd ) y ) <-> ( a = x /\ -. y = z ) ) |
| 55 | 32 54 | bitri | |- ( <. a , z >. ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. <-> ( a = x /\ -. y = z ) ) |
| 56 | 29 55 | bitrdi | |- ( q = <. a , z >. -> ( q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. <-> ( a = x /\ -. y = z ) ) ) |
| 57 | 28 56 | anbi12d | |- ( q = <. a , z >. -> ( ( ( <. x , y >. e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) <-> ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ ( a = x /\ -. y = z ) ) ) ) |
| 58 | an12 | |- ( ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ ( a = x /\ -. y = z ) ) <-> ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) |
|
| 59 | 57 58 | bitrdi | |- ( q = <. a , z >. -> ( ( ( <. x , y >. e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) <-> ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) ) |
| 60 | 21 22 26 59 | ceqsex2v | |- ( E. p E. q ( p = <. x , y >. /\ q = <. a , z >. /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) |
| 61 | 20 60 | bitr3i | |- ( E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) |
| 62 | 61 | exbii | |- ( E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. a ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) |
| 63 | opeq1 | |- ( a = x -> <. a , z >. = <. x , z >. ) |
|
| 64 | 63 | eleq1d | |- ( a = x -> ( <. a , z >. e. F <-> <. x , z >. e. F ) ) |
| 65 | 64 | anbi2d | |- ( a = x -> ( ( <. x , y >. e. F /\ <. a , z >. e. F ) <-> ( <. x , y >. e. F /\ <. x , z >. e. F ) ) ) |
| 66 | 65 | anbi1d | |- ( a = x -> ( ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) <-> ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) ) ) |
| 67 | 66 | equsexvw | |- ( E. a ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) <-> ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) ) |
| 68 | 62 67 | bitri | |- ( E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) ) |
| 69 | 68 | exbii | |- ( E. z E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) ) |
| 70 | exanali | |- ( E. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) <-> -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
|
| 71 | 69 70 | bitri | |- ( E. z E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
| 72 | 17 18 71 | 3bitri | |- ( E. p E. q E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
| 73 | 72 | exbii | |- ( E. y E. p E. q E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. y -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
| 74 | exnal | |- ( E. y -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) <-> -. A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
|
| 75 | 16 73 74 | 3bitri | |- ( E. q E. p E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> -. A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
| 76 | 75 | exbii | |- ( E. x E. q E. p E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. x -. A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
| 77 | exnal | |- ( E. x -. A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) <-> -. A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
|
| 78 | 15 76 77 | 3bitri | |- ( E. p E. q E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> -. A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
| 79 | 14 78 | bitrdi | |- ( Rel F -> ( E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> -. A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) ) |
| 80 | 79 | con2bid | |- ( Rel F -> ( A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) <-> -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
| 81 | 80 | pm5.32i | |- ( ( Rel F /\ A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) <-> ( Rel F /\ -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
| 82 | dffun4 | |- ( Fun F <-> ( Rel F /\ A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) ) |
|
| 83 | df-funs | |- Funs = ( ~P ( _V X. _V ) \ Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) |
|
| 84 | 83 | eleq2i | |- ( F e. Funs <-> F e. ( ~P ( _V X. _V ) \ Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) ) |
| 85 | eldif | |- ( F e. ( ~P ( _V X. _V ) \ Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) <-> ( F e. ~P ( _V X. _V ) /\ -. F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) ) |
|
| 86 | 1 | elpw | |- ( F e. ~P ( _V X. _V ) <-> F C_ ( _V X. _V ) ) |
| 87 | df-rel | |- ( Rel F <-> F C_ ( _V X. _V ) ) |
|
| 88 | 86 87 | bitr4i | |- ( F e. ~P ( _V X. _V ) <-> Rel F ) |
| 89 | 1 | elfix | |- ( F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) <-> F ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) F ) |
| 90 | 1 1 | coep | |- ( F ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) F <-> E. p e. F F ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) p ) |
| 91 | vex | |- p e. _V |
|
| 92 | 1 91 | coepr | |- ( F ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) p <-> E. q e. F q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) |
| 93 | 92 | rexbii | |- ( E. p e. F F ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) p <-> E. p e. F E. q e. F q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) |
| 94 | 90 93 | bitri | |- ( F ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) F <-> E. p e. F E. q e. F q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) |
| 95 | r2ex | |- ( E. p e. F E. q e. F q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p <-> E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) |
|
| 96 | 89 94 95 | 3bitri | |- ( F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) <-> E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) |
| 97 | 96 | notbii | |- ( -. F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) <-> -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) |
| 98 | 88 97 | anbi12i | |- ( ( F e. ~P ( _V X. _V ) /\ -. F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) <-> ( Rel F /\ -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
| 99 | 84 85 98 | 3bitri | |- ( F e. Funs <-> ( Rel F /\ -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
| 100 | 81 82 99 | 3bitr4ri | |- ( F e. Funs <-> Fun F ) |