This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a function. Definition 6.4(4) of TakeutiZaring p. 24. (Contributed by NM, 29-Dec-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffun4 | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) → 𝑦 = 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 2 | df-br | ⊢ ( 𝑥 𝐴 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) | |
| 3 | df-br | ⊢ ( 𝑥 𝐴 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) | |
| 4 | 2 3 | anbi12i | ⊢ ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) ) |
| 5 | 4 | imbi1i | ⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 7 | 6 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 8 | 7 | anbi2i | ⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) → 𝑦 = 𝑧 ) ) ) |
| 9 | 1 8 | bitri | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) → 𝑦 = 𝑧 ) ) ) |