This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v , this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtxp.1 | ⊢ 𝑋 ∈ V | |
| brtxp.2 | ⊢ 𝑌 ∈ V | ||
| brtxp.3 | ⊢ 𝑍 ∈ V | ||
| Assertion | brtxp | ⊢ ( 𝑋 ( 𝐴 ⊗ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ ( 𝑋 𝐴 𝑌 ∧ 𝑋 𝐵 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxp.1 | ⊢ 𝑋 ∈ V | |
| 2 | brtxp.2 | ⊢ 𝑌 ∈ V | |
| 3 | brtxp.3 | ⊢ 𝑍 ∈ V | |
| 4 | df-txp | ⊢ ( 𝐴 ⊗ 𝐵 ) = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) | |
| 5 | 4 | breqi | ⊢ ( 𝑋 ( 𝐴 ⊗ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ 𝑋 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) 〈 𝑌 , 𝑍 〉 ) |
| 6 | brin | ⊢ ( 𝑋 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) 〈 𝑌 , 𝑍 〉 ↔ ( 𝑋 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) 〈 𝑌 , 𝑍 〉 ∧ 𝑋 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) 〈 𝑌 , 𝑍 〉 ) ) | |
| 7 | opex | ⊢ 〈 𝑌 , 𝑍 〉 ∈ V | |
| 8 | 1 7 | brco | ⊢ ( 𝑋 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) 〈 𝑌 , 𝑍 〉 ↔ ∃ 𝑦 ( 𝑋 𝐴 𝑦 ∧ 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ) |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | 9 7 | brcnv | ⊢ ( 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ↔ 〈 𝑌 , 𝑍 〉 ( 1st ↾ ( V × V ) ) 𝑦 ) |
| 11 | 2 3 | opelvv | ⊢ 〈 𝑌 , 𝑍 〉 ∈ ( V × V ) |
| 12 | 9 | brresi | ⊢ ( 〈 𝑌 , 𝑍 〉 ( 1st ↾ ( V × V ) ) 𝑦 ↔ ( 〈 𝑌 , 𝑍 〉 ∈ ( V × V ) ∧ 〈 𝑌 , 𝑍 〉 1st 𝑦 ) ) |
| 13 | 11 12 | mpbiran | ⊢ ( 〈 𝑌 , 𝑍 〉 ( 1st ↾ ( V × V ) ) 𝑦 ↔ 〈 𝑌 , 𝑍 〉 1st 𝑦 ) |
| 14 | 2 3 | br1steq | ⊢ ( 〈 𝑌 , 𝑍 〉 1st 𝑦 ↔ 𝑦 = 𝑌 ) |
| 15 | 10 13 14 | 3bitri | ⊢ ( 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ↔ 𝑦 = 𝑌 ) |
| 16 | 15 | anbi1ci | ⊢ ( ( 𝑋 𝐴 𝑦 ∧ 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ↔ ( 𝑦 = 𝑌 ∧ 𝑋 𝐴 𝑦 ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑦 ( 𝑋 𝐴 𝑦 ∧ 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ↔ ∃ 𝑦 ( 𝑦 = 𝑌 ∧ 𝑋 𝐴 𝑦 ) ) |
| 18 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐴 𝑦 ↔ 𝑋 𝐴 𝑌 ) ) | |
| 19 | 2 18 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝑌 ∧ 𝑋 𝐴 𝑦 ) ↔ 𝑋 𝐴 𝑌 ) |
| 20 | 8 17 19 | 3bitri | ⊢ ( 𝑋 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) 〈 𝑌 , 𝑍 〉 ↔ 𝑋 𝐴 𝑌 ) |
| 21 | 1 7 | brco | ⊢ ( 𝑋 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ ∃ 𝑧 ( 𝑋 𝐵 𝑧 ∧ 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ) |
| 22 | vex | ⊢ 𝑧 ∈ V | |
| 23 | 22 7 | brcnv | ⊢ ( 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ↔ 〈 𝑌 , 𝑍 〉 ( 2nd ↾ ( V × V ) ) 𝑧 ) |
| 24 | 22 | brresi | ⊢ ( 〈 𝑌 , 𝑍 〉 ( 2nd ↾ ( V × V ) ) 𝑧 ↔ ( 〈 𝑌 , 𝑍 〉 ∈ ( V × V ) ∧ 〈 𝑌 , 𝑍 〉 2nd 𝑧 ) ) |
| 25 | 11 24 | mpbiran | ⊢ ( 〈 𝑌 , 𝑍 〉 ( 2nd ↾ ( V × V ) ) 𝑧 ↔ 〈 𝑌 , 𝑍 〉 2nd 𝑧 ) |
| 26 | 2 3 | br2ndeq | ⊢ ( 〈 𝑌 , 𝑍 〉 2nd 𝑧 ↔ 𝑧 = 𝑍 ) |
| 27 | 23 25 26 | 3bitri | ⊢ ( 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ↔ 𝑧 = 𝑍 ) |
| 28 | 27 | anbi1ci | ⊢ ( ( 𝑋 𝐵 𝑧 ∧ 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ↔ ( 𝑧 = 𝑍 ∧ 𝑋 𝐵 𝑧 ) ) |
| 29 | 28 | exbii | ⊢ ( ∃ 𝑧 ( 𝑋 𝐵 𝑧 ∧ 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ↔ ∃ 𝑧 ( 𝑧 = 𝑍 ∧ 𝑋 𝐵 𝑧 ) ) |
| 30 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 𝐵 𝑧 ↔ 𝑋 𝐵 𝑍 ) ) | |
| 31 | 3 30 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧 = 𝑍 ∧ 𝑋 𝐵 𝑧 ) ↔ 𝑋 𝐵 𝑍 ) |
| 32 | 21 29 31 | 3bitri | ⊢ ( 𝑋 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ 𝑋 𝐵 𝑍 ) |
| 33 | 20 32 | anbi12i | ⊢ ( ( 𝑋 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) 〈 𝑌 , 𝑍 〉 ∧ 𝑋 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) 〈 𝑌 , 𝑍 〉 ) ↔ ( 𝑋 𝐴 𝑌 ∧ 𝑋 𝐵 𝑍 ) ) |
| 34 | 5 6 33 | 3bitri | ⊢ ( 𝑋 ( 𝐴 ⊗ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ ( 𝑋 𝐴 𝑌 ∧ 𝑋 𝐵 𝑍 ) ) |