This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for membership in the difference of _om and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldifsucnn | |- ( A e. _om -> ( B e. ( _om \ suc A ) <-> E. x e. ( _om \ A ) B = suc x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 2 | nnawordex | |- ( ( suc A e. _om /\ B e. _om ) -> ( suc A C_ B <-> E. y e. _om ( suc A +o y ) = B ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. _om /\ B e. _om ) -> ( suc A C_ B <-> E. y e. _om ( suc A +o y ) = B ) ) |
| 4 | nnacl | |- ( ( A e. _om /\ y e. _om ) -> ( A +o y ) e. _om ) |
|
| 5 | nnaword1 | |- ( ( A e. _om /\ y e. _om ) -> A C_ ( A +o y ) ) |
|
| 6 | nnasuc | |- ( ( y e. _om /\ A e. _om ) -> ( y +o suc A ) = suc ( y +o A ) ) |
|
| 7 | 6 | ancoms | |- ( ( A e. _om /\ y e. _om ) -> ( y +o suc A ) = suc ( y +o A ) ) |
| 8 | nnacom | |- ( ( suc A e. _om /\ y e. _om ) -> ( suc A +o y ) = ( y +o suc A ) ) |
|
| 9 | 1 8 | sylan | |- ( ( A e. _om /\ y e. _om ) -> ( suc A +o y ) = ( y +o suc A ) ) |
| 10 | nnacom | |- ( ( A e. _om /\ y e. _om ) -> ( A +o y ) = ( y +o A ) ) |
|
| 11 | suceq | |- ( ( A +o y ) = ( y +o A ) -> suc ( A +o y ) = suc ( y +o A ) ) |
|
| 12 | 10 11 | syl | |- ( ( A e. _om /\ y e. _om ) -> suc ( A +o y ) = suc ( y +o A ) ) |
| 13 | 7 9 12 | 3eqtr4d | |- ( ( A e. _om /\ y e. _om ) -> ( suc A +o y ) = suc ( A +o y ) ) |
| 14 | sseq2 | |- ( x = ( A +o y ) -> ( A C_ x <-> A C_ ( A +o y ) ) ) |
|
| 15 | suceq | |- ( x = ( A +o y ) -> suc x = suc ( A +o y ) ) |
|
| 16 | 15 | eqeq2d | |- ( x = ( A +o y ) -> ( ( suc A +o y ) = suc x <-> ( suc A +o y ) = suc ( A +o y ) ) ) |
| 17 | 14 16 | anbi12d | |- ( x = ( A +o y ) -> ( ( A C_ x /\ ( suc A +o y ) = suc x ) <-> ( A C_ ( A +o y ) /\ ( suc A +o y ) = suc ( A +o y ) ) ) ) |
| 18 | 17 | rspcev | |- ( ( ( A +o y ) e. _om /\ ( A C_ ( A +o y ) /\ ( suc A +o y ) = suc ( A +o y ) ) ) -> E. x e. _om ( A C_ x /\ ( suc A +o y ) = suc x ) ) |
| 19 | 4 5 13 18 | syl12anc | |- ( ( A e. _om /\ y e. _om ) -> E. x e. _om ( A C_ x /\ ( suc A +o y ) = suc x ) ) |
| 20 | eqeq1 | |- ( ( suc A +o y ) = B -> ( ( suc A +o y ) = suc x <-> B = suc x ) ) |
|
| 21 | 20 | anbi2d | |- ( ( suc A +o y ) = B -> ( ( A C_ x /\ ( suc A +o y ) = suc x ) <-> ( A C_ x /\ B = suc x ) ) ) |
| 22 | 21 | rexbidv | |- ( ( suc A +o y ) = B -> ( E. x e. _om ( A C_ x /\ ( suc A +o y ) = suc x ) <-> E. x e. _om ( A C_ x /\ B = suc x ) ) ) |
| 23 | 19 22 | syl5ibcom | |- ( ( A e. _om /\ y e. _om ) -> ( ( suc A +o y ) = B -> E. x e. _om ( A C_ x /\ B = suc x ) ) ) |
| 24 | 23 | rexlimdva | |- ( A e. _om -> ( E. y e. _om ( suc A +o y ) = B -> E. x e. _om ( A C_ x /\ B = suc x ) ) ) |
| 25 | 24 | adantr | |- ( ( A e. _om /\ B e. _om ) -> ( E. y e. _om ( suc A +o y ) = B -> E. x e. _om ( A C_ x /\ B = suc x ) ) ) |
| 26 | 3 25 | sylbid | |- ( ( A e. _om /\ B e. _om ) -> ( suc A C_ B -> E. x e. _om ( A C_ x /\ B = suc x ) ) ) |
| 27 | 26 | expimpd | |- ( A e. _om -> ( ( B e. _om /\ suc A C_ B ) -> E. x e. _om ( A C_ x /\ B = suc x ) ) ) |
| 28 | peano2 | |- ( x e. _om -> suc x e. _om ) |
|
| 29 | 28 | ad2antlr | |- ( ( ( A e. _om /\ x e. _om ) /\ A C_ x ) -> suc x e. _om ) |
| 30 | nnord | |- ( A e. _om -> Ord A ) |
|
| 31 | nnord | |- ( x e. _om -> Ord x ) |
|
| 32 | ordsucsssuc | |- ( ( Ord A /\ Ord x ) -> ( A C_ x <-> suc A C_ suc x ) ) |
|
| 33 | 30 31 32 | syl2an | |- ( ( A e. _om /\ x e. _om ) -> ( A C_ x <-> suc A C_ suc x ) ) |
| 34 | 33 | biimpa | |- ( ( ( A e. _om /\ x e. _om ) /\ A C_ x ) -> suc A C_ suc x ) |
| 35 | 29 34 | jca | |- ( ( ( A e. _om /\ x e. _om ) /\ A C_ x ) -> ( suc x e. _om /\ suc A C_ suc x ) ) |
| 36 | eleq1 | |- ( B = suc x -> ( B e. _om <-> suc x e. _om ) ) |
|
| 37 | sseq2 | |- ( B = suc x -> ( suc A C_ B <-> suc A C_ suc x ) ) |
|
| 38 | 36 37 | anbi12d | |- ( B = suc x -> ( ( B e. _om /\ suc A C_ B ) <-> ( suc x e. _om /\ suc A C_ suc x ) ) ) |
| 39 | 35 38 | syl5ibrcom | |- ( ( ( A e. _om /\ x e. _om ) /\ A C_ x ) -> ( B = suc x -> ( B e. _om /\ suc A C_ B ) ) ) |
| 40 | 39 | expimpd | |- ( ( A e. _om /\ x e. _om ) -> ( ( A C_ x /\ B = suc x ) -> ( B e. _om /\ suc A C_ B ) ) ) |
| 41 | 40 | rexlimdva | |- ( A e. _om -> ( E. x e. _om ( A C_ x /\ B = suc x ) -> ( B e. _om /\ suc A C_ B ) ) ) |
| 42 | 27 41 | impbid | |- ( A e. _om -> ( ( B e. _om /\ suc A C_ B ) <-> E. x e. _om ( A C_ x /\ B = suc x ) ) ) |
| 43 | eldif | |- ( B e. ( _om \ suc A ) <-> ( B e. _om /\ -. B e. suc A ) ) |
|
| 44 | nnord | |- ( suc A e. _om -> Ord suc A ) |
|
| 45 | 1 44 | syl | |- ( A e. _om -> Ord suc A ) |
| 46 | nnord | |- ( B e. _om -> Ord B ) |
|
| 47 | ordtri1 | |- ( ( Ord suc A /\ Ord B ) -> ( suc A C_ B <-> -. B e. suc A ) ) |
|
| 48 | 45 46 47 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( suc A C_ B <-> -. B e. suc A ) ) |
| 49 | 48 | pm5.32da | |- ( A e. _om -> ( ( B e. _om /\ suc A C_ B ) <-> ( B e. _om /\ -. B e. suc A ) ) ) |
| 50 | 43 49 | bitr4id | |- ( A e. _om -> ( B e. ( _om \ suc A ) <-> ( B e. _om /\ suc A C_ B ) ) ) |
| 51 | eldif | |- ( x e. ( _om \ A ) <-> ( x e. _om /\ -. x e. A ) ) |
|
| 52 | 51 | anbi1i | |- ( ( x e. ( _om \ A ) /\ B = suc x ) <-> ( ( x e. _om /\ -. x e. A ) /\ B = suc x ) ) |
| 53 | anass | |- ( ( ( x e. _om /\ -. x e. A ) /\ B = suc x ) <-> ( x e. _om /\ ( -. x e. A /\ B = suc x ) ) ) |
|
| 54 | 52 53 | bitri | |- ( ( x e. ( _om \ A ) /\ B = suc x ) <-> ( x e. _om /\ ( -. x e. A /\ B = suc x ) ) ) |
| 55 | 54 | rexbii2 | |- ( E. x e. ( _om \ A ) B = suc x <-> E. x e. _om ( -. x e. A /\ B = suc x ) ) |
| 56 | ordtri1 | |- ( ( Ord A /\ Ord x ) -> ( A C_ x <-> -. x e. A ) ) |
|
| 57 | 30 31 56 | syl2an | |- ( ( A e. _om /\ x e. _om ) -> ( A C_ x <-> -. x e. A ) ) |
| 58 | 57 | anbi1d | |- ( ( A e. _om /\ x e. _om ) -> ( ( A C_ x /\ B = suc x ) <-> ( -. x e. A /\ B = suc x ) ) ) |
| 59 | 58 | rexbidva | |- ( A e. _om -> ( E. x e. _om ( A C_ x /\ B = suc x ) <-> E. x e. _om ( -. x e. A /\ B = suc x ) ) ) |
| 60 | 55 59 | bitr4id | |- ( A e. _om -> ( E. x e. ( _om \ A ) B = suc x <-> E. x e. _om ( A C_ x /\ B = suc x ) ) ) |
| 61 | 42 50 60 | 3bitr4d | |- ( A e. _om -> ( B e. ( _om \ suc A ) <-> E. x e. ( _om \ A ) B = suc x ) ) |