This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number whose exponential is one is an integer multiple of 2pi i . (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efeq1 | |- ( A e. CC -> ( ( exp ` A ) = 1 <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcl | |- ( A e. CC -> ( A / 2 ) e. CC ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | ine0 | |- _i =/= 0 |
|
| 4 | divcl | |- ( ( ( A / 2 ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( A / 2 ) / _i ) e. CC ) |
|
| 5 | 2 3 4 | mp3an23 | |- ( ( A / 2 ) e. CC -> ( ( A / 2 ) / _i ) e. CC ) |
| 6 | 1 5 | syl | |- ( A e. CC -> ( ( A / 2 ) / _i ) e. CC ) |
| 7 | sineq0 | |- ( ( ( A / 2 ) / _i ) e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ ) ) |
|
| 8 | 6 7 | syl | |- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ ) ) |
| 9 | sinval | |- ( ( ( A / 2 ) / _i ) e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) ) |
|
| 10 | 6 9 | syl | |- ( A e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) ) |
| 11 | divcan2 | |- ( ( ( A / 2 ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
|
| 12 | 2 3 11 | mp3an23 | |- ( ( A / 2 ) e. CC -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
| 13 | 1 12 | syl | |- ( A e. CC -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
| 14 | 13 | fveq2d | |- ( A e. CC -> ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) = ( exp ` ( A / 2 ) ) ) |
| 15 | mulneg1 | |- ( ( _i e. CC /\ ( ( A / 2 ) / _i ) e. CC ) -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( _i x. ( ( A / 2 ) / _i ) ) ) |
|
| 16 | 2 6 15 | sylancr | |- ( A e. CC -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( _i x. ( ( A / 2 ) / _i ) ) ) |
| 17 | 13 | negeqd | |- ( A e. CC -> -u ( _i x. ( ( A / 2 ) / _i ) ) = -u ( A / 2 ) ) |
| 18 | 16 17 | eqtrd | |- ( A e. CC -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( A / 2 ) ) |
| 19 | 18 | fveq2d | |- ( A e. CC -> ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) = ( exp ` -u ( A / 2 ) ) ) |
| 20 | 14 19 | oveq12d | |- ( A e. CC -> ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) = ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) ) |
| 21 | 20 | oveq1d | |- ( A e. CC -> ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) ) |
| 22 | 10 21 | eqtrd | |- ( A e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) ) |
| 23 | 22 | eqeq1d | |- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 ) ) |
| 24 | efcl | |- ( ( A / 2 ) e. CC -> ( exp ` ( A / 2 ) ) e. CC ) |
|
| 25 | 1 24 | syl | |- ( A e. CC -> ( exp ` ( A / 2 ) ) e. CC ) |
| 26 | 1 | negcld | |- ( A e. CC -> -u ( A / 2 ) e. CC ) |
| 27 | efcl | |- ( -u ( A / 2 ) e. CC -> ( exp ` -u ( A / 2 ) ) e. CC ) |
|
| 28 | 26 27 | syl | |- ( A e. CC -> ( exp ` -u ( A / 2 ) ) e. CC ) |
| 29 | 25 28 | subcld | |- ( A e. CC -> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC ) |
| 30 | 2cn | |- 2 e. CC |
|
| 31 | 30 2 | mulcli | |- ( 2 x. _i ) e. CC |
| 32 | 2ne0 | |- 2 =/= 0 |
|
| 33 | 30 2 32 3 | mulne0i | |- ( 2 x. _i ) =/= 0 |
| 34 | diveq0 | |- ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
|
| 35 | 31 33 34 | mp3an23 | |- ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
| 36 | 29 35 | syl | |- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
| 37 | efne0 | |- ( -u ( A / 2 ) e. CC -> ( exp ` -u ( A / 2 ) ) =/= 0 ) |
|
| 38 | 26 37 | syl | |- ( A e. CC -> ( exp ` -u ( A / 2 ) ) =/= 0 ) |
| 39 | 25 28 28 38 | divsubdird | |- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = ( ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) - ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) ) |
| 40 | efsub | |- ( ( ( A / 2 ) e. CC /\ -u ( A / 2 ) e. CC ) -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) |
|
| 41 | 1 26 40 | syl2anc | |- ( A e. CC -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) |
| 42 | 1 1 | subnegd | |- ( A e. CC -> ( ( A / 2 ) - -u ( A / 2 ) ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
| 43 | 2halves | |- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |
|
| 44 | 42 43 | eqtrd | |- ( A e. CC -> ( ( A / 2 ) - -u ( A / 2 ) ) = A ) |
| 45 | 44 | fveq2d | |- ( A e. CC -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( exp ` A ) ) |
| 46 | 41 45 | eqtr3d | |- ( A e. CC -> ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) = ( exp ` A ) ) |
| 47 | 28 38 | dividd | |- ( A e. CC -> ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) = 1 ) |
| 48 | 46 47 | oveq12d | |- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) - ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) = ( ( exp ` A ) - 1 ) ) |
| 49 | 39 48 | eqtrd | |- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = ( ( exp ` A ) - 1 ) ) |
| 50 | 49 | eqeq1d | |- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( ( exp ` A ) - 1 ) = 0 ) ) |
| 51 | 29 28 38 | diveq0ad | |- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
| 52 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 53 | ax-1cn | |- 1 e. CC |
|
| 54 | subeq0 | |- ( ( ( exp ` A ) e. CC /\ 1 e. CC ) -> ( ( ( exp ` A ) - 1 ) = 0 <-> ( exp ` A ) = 1 ) ) |
|
| 55 | 52 53 54 | sylancl | |- ( A e. CC -> ( ( ( exp ` A ) - 1 ) = 0 <-> ( exp ` A ) = 1 ) ) |
| 56 | 50 51 55 | 3bitr3d | |- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( exp ` A ) = 1 ) ) |
| 57 | 23 36 56 | 3bitrd | |- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( exp ` A ) = 1 ) ) |
| 58 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 59 | 2 3 | pm3.2i | |- ( _i e. CC /\ _i =/= 0 ) |
| 60 | divdiv32 | |- ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A / 2 ) / _i ) = ( ( A / _i ) / 2 ) ) |
|
| 61 | 58 59 60 | mp3an23 | |- ( A e. CC -> ( ( A / 2 ) / _i ) = ( ( A / _i ) / 2 ) ) |
| 62 | 61 | oveq1d | |- ( A e. CC -> ( ( ( A / 2 ) / _i ) / _pi ) = ( ( ( A / _i ) / 2 ) / _pi ) ) |
| 63 | divcl | |- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) e. CC ) |
|
| 64 | 2 3 63 | mp3an23 | |- ( A e. CC -> ( A / _i ) e. CC ) |
| 65 | picn | |- _pi e. CC |
|
| 66 | pire | |- _pi e. RR |
|
| 67 | pipos | |- 0 < _pi |
|
| 68 | 66 67 | gt0ne0ii | |- _pi =/= 0 |
| 69 | 65 68 | pm3.2i | |- ( _pi e. CC /\ _pi =/= 0 ) |
| 70 | divdiv1 | |- ( ( ( A / _i ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
|
| 71 | 58 69 70 | mp3an23 | |- ( ( A / _i ) e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
| 72 | 64 71 | syl | |- ( A e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
| 73 | 30 65 | mulcli | |- ( 2 x. _pi ) e. CC |
| 74 | 30 65 32 68 | mulne0i | |- ( 2 x. _pi ) =/= 0 |
| 75 | 73 74 | pm3.2i | |- ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) |
| 76 | divdiv1 | |- ( ( A e. CC /\ ( _i e. CC /\ _i =/= 0 ) /\ ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) ) -> ( ( A / _i ) / ( 2 x. _pi ) ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
|
| 77 | 59 75 76 | mp3an23 | |- ( A e. CC -> ( ( A / _i ) / ( 2 x. _pi ) ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
| 78 | 72 77 | eqtrd | |- ( A e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
| 79 | 62 78 | eqtrd | |- ( A e. CC -> ( ( ( A / 2 ) / _i ) / _pi ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
| 80 | 79 | eleq1d | |- ( A e. CC -> ( ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 81 | 8 57 80 | 3bitr3d | |- ( A e. CC -> ( ( exp ` A ) = 1 <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |