This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 3 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 4 | 3simpc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 5 | divmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 / 𝐵 ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ↔ ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) ) | |
| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ↔ ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) ) |
| 7 | 1 6 | mpbii | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) |